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INTRODUCTION

As well known, anthropogenic halogenated gases bam@ibuted to the decrease in stratospheric 0Zbhis. depletion is expected to gradually disappeaa essult of reductions of emissions| of
these gases as imposed by the Montreal Protoc8Ff18eanwhile, since 1980 the amount of major gheese gases has increased, which not only aféictate but makes ozone recovery
highly problematic. ORACLE-O3 is a collaborativeojact within the third International Polar Year YIPdesigned to extensively study the amplitude tumé extension of ozone recovery. Ow|ng
to their key role in ozone depletion, Polar Strptesic Clouds (PSC) studies are part of the profeatticle type is largely influenced by temperatanel the thermal history of the air massef in
which PSCs occur. However, substantial uncertairstiEsit these processes still remain. UnderstandingRSCs form and evolve is a critical issue in gifiging the impact of climate change pn
their frequency and, further, on chlorine activatand subsequent ozone depletion.

METHODOLOGY
For the first time, the “MATCH” method [Rex et all998] is applied to lidar observations of PSC. Tle&ds to combin
ground-based and space-borne lidar observatiorth, lveigrangian trajectory calculations, to infer imf@tion on formatiol
processes of each PSC type and assess our abilisetlict PSCs for various environmental conditiofise campaigns togk
place in Antarctica during winters 2006, 2007 af@& Microphysical model calculations are perforni@danalysing the da
and testing PSC formation scenarios along thediajies.
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June ' July PSC is disappearing gradually over DDU, less on CALIPS@. d4 |
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