Stratospheric role for tropospheric circulation change

A high-top low-top comparison study with the GFDL climate model

Thomas Reichler (U. Utah) Gang Chen (MIT), and Jian Lu (NCAR)

1. Introduction

In this modeling study, we explore the response of the atmospheric general circulation to anthropogenic climate change. We use the **uncoupled** GFDL AM2/3 climate model to understand how sensitive the response is to forcings such as ozone depletion, greenhouse gas increase, and warming SSTs.

2. Experimental Setup

We prescribe climatological mean SSTs from the coupled GFDL model. Each experiment is at least 40 years long and is conducted twice with the low- (L24) and high-top (L48) version of the model to understand the influence of stratospheric resolution for the simulation of climate. The following experiments are conducted:

Simulations

Name	Length	SSTs	GHGs	Ozone	Aerosols	
SST ₁₉	500	Р	Р	Р	V	▲
$O_3 SST_{19}$	200	Р	Р	I	V	
¹ ∕ ₂ CO ₂ SST ₁₉	80	Р	1/2	Р	V	<u>o</u>
CO ₂ SST ₁₉	"	Р	I	Р	V	onti
2xCO ₂ SST ₁₉	200	Р	x2	Р	V	S
4xCO ₂ SST ₁₉	40	Р	x4	Р	V	
$CO_2 O_3 SST_{19}$	80	Р	I	Р	V	
SST ₂₀	"	I	Р	Р	V	
$O_3 SST_{20}$	u	I	Р	I	V	
CO ₂ SST ₂₀	"	I	I	Р	V	
$CO_2 O_3 SST_{20}$	u	I	I	I	V	~
SST ₂₁	"	A1B	Р	Р	V	
2xCO ₂ SST ₂₁	u	A1B	x2	Р	V	ay
SST ₂₃	"	A1B	Р	Р	V	t-d
2xCO ₂ SST ₂₃	u	A1B	x2	Р	V	ien.
nV SST ₁₉	40	Р	Р	Р	В	res

P: Pre-industrial I: Industrial V: Variable B: Background

SSTs were derived from corresponding runs with the coupled version of the model (CM2.1).

3. Basic Response T (DJF)

- Tropospheric warming stratospheric cooling
- SSTs control tropospheric temperatures
- O₃ and CO₂ largely control stratospheric temperatures
- Strong O₃ related cooling (-5 K) over South O₃ CO₂
 Pole

90S 60S 30S 0 30N 60N 90N 90S 60S 30S 0

30N 60N 90N

u (DJF)

- In all cases intensified and poleward shifted polar vortex
- Clear tropospheric response (SAM+), even if only stratosphere is perturbed (downward influence)

Low frequency variability year 1-10 u (DJF)

- Considerable lowfrequency variability 21-30 in the stratosphere
- Frequency of stratospheric sudden warming events?

Phase Speed Spectra DJFM

South Pole: T Seasonality

- Amplified O₃ cooling in L48
- Similar to observations reported by Thompson & Solomon (2002):

Polar cap (65-90S) temperature anom.

South Pole: Z Seasonality

- Amplified tropospheric SAM+ response in L48
- Again, very similar to Thompson & Solomon (2002):

Month

Annual Cycle Relationships

HC • mmc

- tropopause
- u_{sfc}= 0
- $-\operatorname{div}(\mathrm{uv}) = 0$

STJ • u₂₅₀ = max

- HC equatorward during summer else joined
- EJ always poleward separated during SH winter else close (ca. 7°)
- EJ u_{sfc} = max ✓ • -div(uv) = max ✓

Widening: SH-DJF

Experiments:

Low/high-top differences Total annual mean change

Annual Mean Total Expansion

5. Tropical Expansion

Averaged over 5 measures (jet, mmc, tp, u_{sfc}=0, d(uv)=0), the model simulates the following annual mean tropical expansion:

Annual mean expansion with respect to pre-industrial control in degrees latitude

	NH	SH	total	range
2000	0.6	0.8	1.4	1.1-1.6
2100 (A1B)	1.3	1.6	2.8	2.0-3.7

Factors for Tropical Expansion

Annual mean total tropical expansion average over five measures with respect to pre-industrial control in degrees latitude

	SST ₁₉	SST ₂₀
	-	1.0
O ₃	0.2	1.2
CO ₂	0.1	1.1
$O_3 + CO_2$	0.5	1.4

- Note the individual effects are almost linearly additive
- SSTs are important, i.e., tropospheric control
- Some effect from stratosphere: O₃ and CO₂

Seasonality of Widening

mmc expansion by experiment and season

 As in observations, strongest expansion during summer and fall in each hemisphere (weak HC)

6. Conclusion

- Model simulated widening:
 - 1.4° by today
 - 2.8° by 2100
- Widening is not restricted to Tropics; many elements of the general circulation shift poleward
- Widening strongest during summer and over SH
- SSTs are most important contributor
- Tropospheric response of low-top model is very similar to that of high-top model