

Improving the representation of ozone in the Met Office Unified Model

Camilla Mathison, David Jackson and Mike Keil. SPARC Conference Bologna, September 2008

This presentation covers the following areas

- Motivation for assimilating ozone
- Ozone in the Met Office Variational Assimilation system
- 4 Methods tested for improving ozone in the Unified Model
- Results, conclusions and future plans
- Questions and answers

Motivation for assimilating ozone

- Ozone is a key trace element
- Ozone could improve certain aspects of NWP
 - Improved radiative heating rates.
 - Better forecasts of surface UV.
 - Possible impact on UTLS winds.
 - Improved radiance assimilation.
- Assimilating ozone allows the exploitation of new and improved satellite data
 - MIPAS (ASSET project) (Geer et al, 2006a,b, 2007; Lahoz et al, 2007)
 - EOSMLS (Jackson, 2007)

Ozone assimilation in the Met Office Unified Model

- An N48 50 level 3D-Var system has been tested in a research environment.
- Plans for 4D-Var test system.
- The model ozone is from tracer transport plus chemistry (Cariolle parameterization)
- Assimilates satellite radiances SBUV. Research satellites such as EOSMLS and MIPAS can also be assimilated.
- **B** is from ECMWF

Observations assimilated

• SBUV

- Nadir viewing, low vertical resolution (1000-16, 16-8, 8-4, 4-2, 2-1 and 1-0.1 hPa layers)
- Horizontal resolution ~ 200 km. No obs in polar night
- EOSMLS
 - Profiles from 215-0.46 hPa with vertical resolution ~ 3km along track resolution of 165km. Global coverage
 - Flies on NASA Aura research satellite not (yet) available in near real time.
- Future Operational Data
 - GOME II onboard METOP similar to EOSMLS
 - OMPS onboard NPOESS
 - Total column and vertical profile ozone data
 - Continuation of SBUV and TOMS data

Methods for Improving ozone

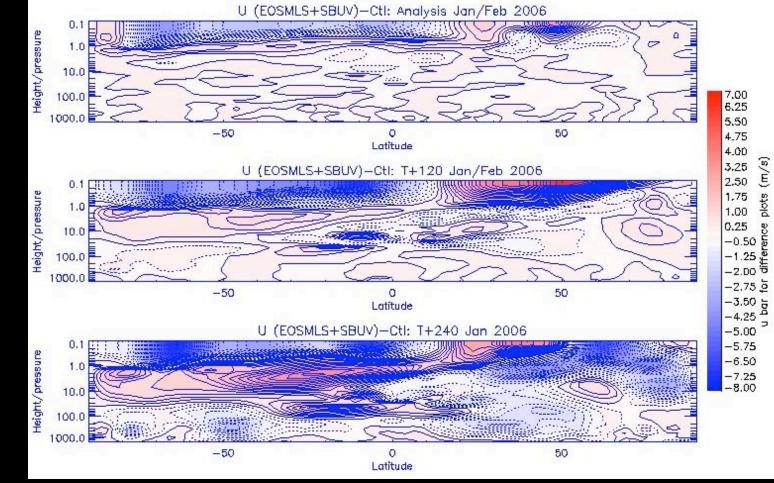
5 experiments were run

- Control
- Alternative climatology SPARC
- Inclusion of ECMWF ozone field
 - ECMWF already assimilate ozone in their model
 - Cheaper to use their field than to carry out the assimilation in the Unified model
 - The ECMWF ozone field might be better
 - One thing less to have to find resources to develop
- Assimilation of EOSMLS and SBUV observations into 3D-Var system
- Assimilation of SBUV observations into 3D-Var System.

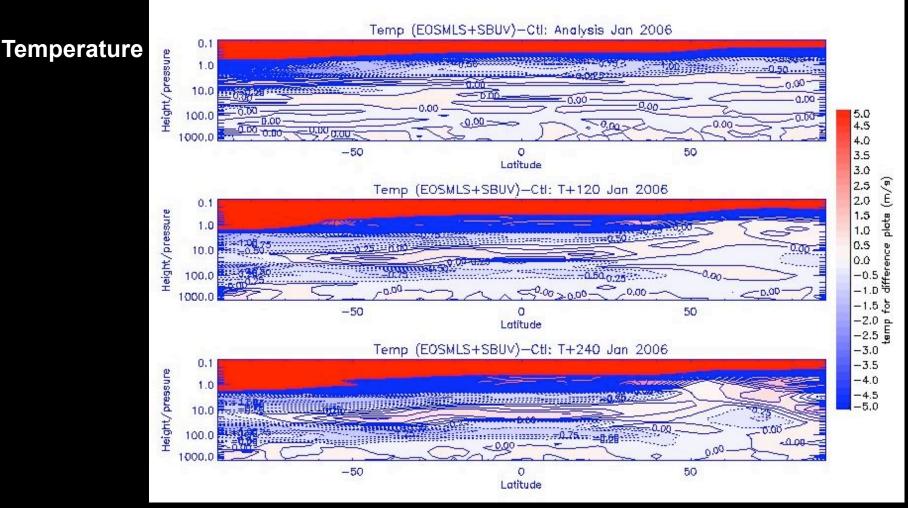
Results

A brief summary of the key results

NWP Index


- A tropospheric measure of performance

	Alternative Ozone Climatology	ECMWF full ozone field	Full Met Office 3D- Var (EOSMLS + SBUV)	Full Met Office 3D-Var (SBUV only)
Global index (compared with analysis)	+0.314	-0.027	+0.413	+0.112
Global index (compared with observations)	+0.051	-0.216	+0.182	+0.289

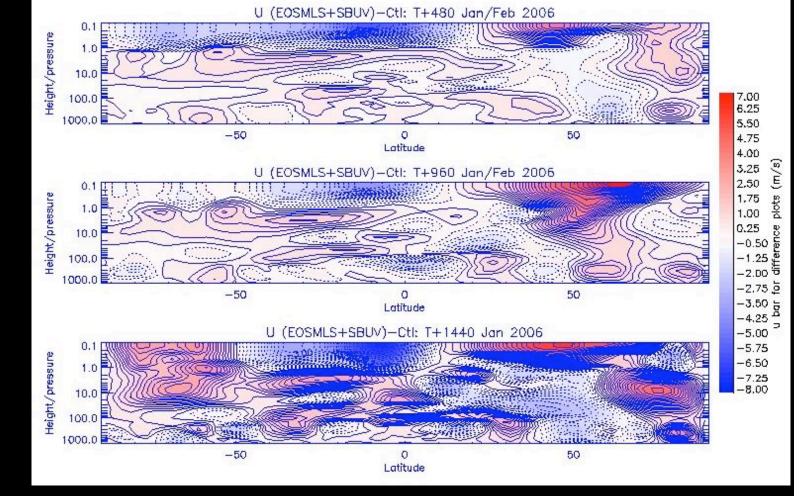

Investigating the response in the troposphere

Winds

Met Office

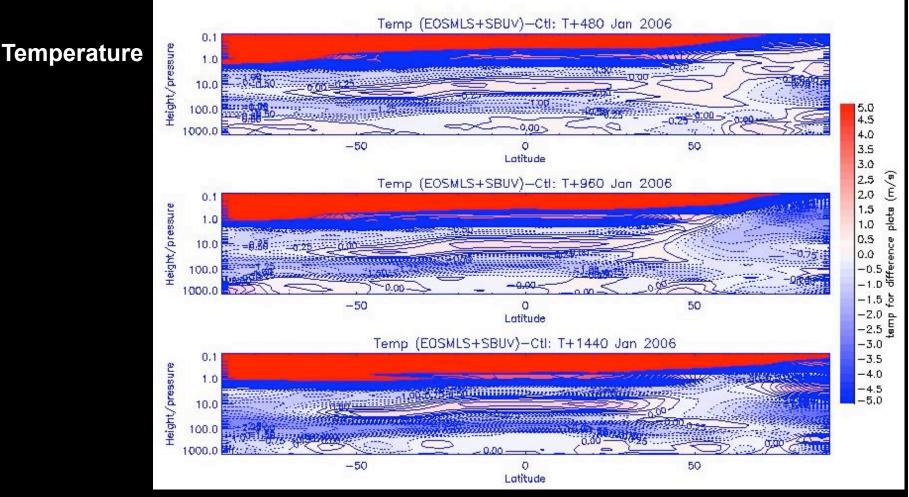
Met Office Investigating the response in the troposphere

- Importing ECMWF ozone field into the UM disappointing results.
- Changing climatology to SPARC had a favourable impact
 - SPARC climatology has more data over a longer period and includes a transport model.
- Ozone analyses is improved by assimilating ozone
 - High resolution data.
 - Mechanisms are being investigated.
 - Currently developing this system into a viable operational system within 4D-Var.



Questions & answers

Investigating the response in the troposphere


Winds

Met Office

Met Office

Investigating the response in the troposphere

