

Effects of Deep Cumulus Convection on Atmospheric Chemistry

Mark G. Lawrence, Holger Tost, Marc Salzmann, Christoph Brühl, Andreas Baumgärtner, Patrick Jöckel, Peter Hoor, and Jos Lelieveld

> Max Planck Institute for Chemistry Mainz, Germany

SPARC Symposium, Bologna, 5 September 2008

- Deep Cumulus Convection Characteristics and Overview of Effects on Atmospheric Chemistry
- Modelling Tools
- Examples
 - Vertical transport characteristics and effects
 - Transport into the TTL, effects on airmasses and water vapor
 - Deep convection parameterizations
 - Effects on O_3 and other tracers: reinterpretation of previous studies

Deep Convective Clouds

Supercell Cumulonimbus

From

09/14/99 10:46 PM EDT 07:46 PM PDT 02:46 GMT Hurricane Floyd (from NOAA)

Mark G. Lawrence, Max Planck Institute for Chemistry

Deep Convection: General Characteristics

Mark G. Lawrence, Max Planck Institute for Chemistry

Mark G. Lawrence, Max Planck Institute for Chemistry

Effects on Atmospheric Chemistry: Overview

- Transport of Surface Emissions to the UT / TTL / LS
 - O₃ Production OH Production
- Transport of Clean Surface Air (e.g., MBL) to the UT / TTL / LS
- Downward Mixing of UT and Stratospheric Air
- Modification of tropospheric and stratospheric water vapor, impact on ozone via HO_x
- Precipitation Scavenging and Anvil Settling
- Lightning NO_v
- **Photolysis Rates**
- Other Effects (e.g., reactions in droplets and on ice)

Modelling Tools

- EMAC ECHAM5/MESSy Atmospheric Chemistry Model
 - EC-Hamburg v5 / Modular Earth Submodel System (currently v1.6)
 - Global coupled atmospheric chemistry-climate model
 - First major evaluation (gas phase) published in Jöckel et al. (ACP, 2006), aerosols under evaluation
 - Extensive chemistry, gas and aerosol, troposphere and stratosphere, many new parameterizations
- MATCH-MPIC Model of Atmospheric Transport and Chemistry
 - Global "Offline" Model (simulations driven by NCEP reanalysis and GFS analysis)
 - Chemical weather forecasting (tropospheric O₃ chemistry, Lawrence et al., 2003), plus regional CO tracers
- WRF CSRMC Weather Research and Forecast Cloud System Resolving Model w/ Chemistry
 - Cloud system resolving or regional model (successor to MM5)
 - Tropospheric chemistry module (KPP, based on MATCH-MPIC) now in WRF CHEM
 - Semi-explicit scavenging, gases transported diagnostically in hydrometeors
 - Multi-day simulations of tracers and chemistry (Salzmann et al., 2004, 2007, 2008)

Deep convective transport components: Idealized squall line simulation

Effect of Convective Mixing on CO

Data from the CONTRACE campaign, Germany, July 2003

Convective Transport Formulations

Arakawa and Schubert, 1974; Lord et al., 1982; Hack et al., 1984; Grell, 1993

Yanai et al., 1973; Tiedtke, 1989; Grell, 1993; Pan and Wu, 1995; Zhang and McFarlane, 1995

Deep Convective Transport: Effects on Artificial Tracers

- Simulated with MATCH-MPIC
- Zonal mean, July 2001
- Lifetime: $\tau = 1 d$
- Surface source

- Detrainment especially stronger above ~15 km in the TTL
- Differences small for longer-lived tracers (τ > 10 d)

Deep Convection - Outflow in the TTL

Airmasses from convection detraining above the transition from radiative cooling to radiative warming (~15 km) have a much greater chance of being transported into the stratosphere

CO-Based Airmass Budgets

fractional contribution of air of different origins to the extratropical lowermost stratosphere

CO-Based Airmass Budgets

(Hoor et al., GRL, 2005)

- EMAC simulations consistent with observations (tape recorder, etc.)
- Deep convection moistens the TTL, especially in Asian summer monsoon
- Slow ascent through the tropopause
- Ascent decelerated above Cbs (radiative cooling), accelerated in outflow where anvils have dissipated
- Cirrus desiccate air during ascent by nearly 100x (relative to air mass flux)

Vertical water mass flux (10⁻⁹ kg m⁻² s⁻¹), JJA

CONVECT Submodel (in EMAC)

- Tost et al. (ACP, 2006) different convection parameterisations:
 - Modified Tiedtke (1989) (Nordeng, 1994)
 - ECMWF Tiedkte-scheme (IFS cycle 29r1b, Tompkins et al., 2004)
 - Zhang-McFarlane (1995) + Hack (1994), including precipitation evaporation extension (Wilcox, 2003; Lang and Lawrence, 2005)
 - Bechtold-scheme (2001)
 - Emanuel and Zivkovic-Rothman (1999)
 - Others in progress
- Mostly based on the mass flux approach (Arakawa and Schubert, 1974)
- Differences:
 - trigger criterion, closure, entrainment formulation, microphysics, programming style and efficiency.....

Precipitation Distribution

Mark G. Lawrence, Max Planck Institute for Chemistry

(Tost et al., ACP, 2006)

Convective Massfluxes

Mark G. Lawrence, Max Planck Institute for Chemistry

(based on Tost et al., ACP, 2006)

Reinterpreting Studies of Deep Convective Transport Effects on Tropospheric O₃ and Other Tracers

- Simulations with convective transport turned off for various tracers used in several previous studies (e.g., Lelieveld and Crutzen, 1994; Mahowald et al., 1997; Collins et al., 1999; Lawrence et al., 2003; Lintner, 2003; Doherty et al., 2005; Erukhimova and Bowman, 2006)
- Interpretation frequently neglected contribution by "equivalent deep convective mass fluxes" present in vertical velocities used in advection schemes
- Potentially significant underestimates or misrepresentations of effects of convective transport
- Particularly important to consider in designing and interpreting simulations for <u>AC&C Activity 2</u>
- Several other implications (e.g., numerical diffusion)

- Many different aspects of deep cumulus convection, including effects on chemistry via:
 - Transport
 - Water Vapor
 - Scavenging
 - Multiphase reactions
 - Photolysis
 - Lightning NOx
 - etc.
- Continued use of a combination of tools: global and cloud resolving models
- Synergetic application of models and measurements (*in situ* and satellite)