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Overview 

•  Deep Cumulus Convection Characteristics and Overview
 of Effects on Atmospheric Chemistry 

•  Modelling Tools 

•  Examples 
–  Vertical transport characteristics and effects 
–  Transport into the TTL, effects on airmasses and water vapor 
–  Deep convection parameterizations 
–  Effects on O3 and other tracers: reinterpretation of previous studies 
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Deep Convective Clouds 

Cumulus Congestus 
Supercell Cumulonimbus 

(From Houze‘s Cloud Atlas) 

(From the Karlsruher Wolkenatlas) 

Hurricane Floyd 

(from NOAA) 
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Downdrafts 

Updrafts 

Deep Convection: General Characteristics 
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Deep Convection: General Characteristics 
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Effects on Atmospheric Chemistry:  
Overview 

•  Transport of Surface Emissions to the UT / TTL / LS 
–  O3 Production  
–  OH Production 

•  Transport of Clean Surface Air (e.g., MBL) to the UT / TTL / LS 
•  Downward Mixing of UT and Stratospheric Air 

•  Modification of tropospheric and stratospheric water vapor,     
 impact on ozone via HOx 

•  Precipitation Scavenging and Anvil Settling 

•  Lightning NOx 

•  Photolysis Rates 

•  Other Effects (e.g., reactions in droplets and on ice) 
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Modelling Tools 
•  EMAC - ECHAM5/MESSy Atmospheric Chemistry Model 

–  EC-Hamburg v5 / Modular Earth Submodel System (currently v1.6) 
–  Global coupled atmospheric chemistry-climate model 
–  First major evaluation (gas phase) published in Jöckel et al. (ACP, 2006), aerosols under evaluation 
–  Extensive chemistry, gas and aerosol, troposphere and stratosphere, many new parameterizations 

•  MATCH-MPIC - Model of Atmospheric Transport and Chemistry 
–  Global „Offline“ Model (simulations driven by NCEP reanalysis and GFS analysis) 
–  Chemical weather forecasting (tropospheric O3 chemistry, Lawrence et al., 2003),                              

 plus regional CO tracers 

•  WRF CSRMC - Weather Research and Forecast Cloud System Resolving Model w/ Chemistry 
–  Cloud system resolving or regional model (successor to MM5) 
–  Tropospheric chemistry module (KPP, based on MATCH-MPIC) now in WRF CHEM 
–  Semi-explicit scavenging, gases transported diagnostically in hydrometeors 
–  Multi-day simulations of tracers and chemistry (Salzmann et al., 2004, 2007, 2008) 
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Deep convective transport components:  
Idealized squall line simulation 

•  Simulated with WRF 
•  Initialization: 

–  Warm bubble 
–  Conditionally instable profile 
–  Tracer: 10 µg/m3 below 2 km 
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Effect of Convective Mixing on CO 

Data from the CONTRACE campaign, Germany, July 2003 
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Yanai et al., 1973; Tiedtke, 1989; 
Grell, 1993; Pan and Wu, 1995; 
Zhang and McFarlane, 1995 

Bulk Plume Ensemble 

Arakawa and Schubert, 1974; Lord et al., 1982;  
Hack et al., 1984; Grell, 1993 

Convective Transport Formulations 

(Lawrence and Rasch, JAS, 2005) 
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Deep Convective Transport: 
Effects on Artificial Tracers 

•  Simulated with MATCH-MPIC 
•  Zonal mean, July 2001 
•  Lifetime: τ = 1 d 
•  Surface source 

•  Detrainment especially stronger
 above ~15 km in the TTL 

•  Differences small for longer-lived
 tracers (τ  > 10 d) 

Ratio: 
(Plume Ensemble) / (Bulk) 

Tracer mixing ratio (10-12 g/g), 
Plume Ensemble Simulation 
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(Lawrence and Rasch, JAS, 2005) 
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Deep Convection – Outflow in the TTL 

(Folkins and Martin, JAS, 2005) 

Airmasses from  convection detraining
 above the transition from radiative
 cooling to radiative warming (~15 km)
 have a much greater chance of being
 transported into the stratosphere 
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 tropical  extratropical  stratosphere 

fractional contribution of air of different origins 
to the extratropical lowermost stratosphere 

(Hoor et al., GRL, 2005) 

CO-Based Airmass Budgets 
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 tropical  extratropical  stratosphere 

(Hoor et al., GRL, 2005) 

CO-Based Airmass Budgets 
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Stratospheric Water Vapor 

•  EMAC simulations consistent with
 observations (tape recorder, etc.) 

•  Deep convection moistens the TTL,
 especially in Asian summer monsoon 

•  Slow ascent through the tropopause 
•  Ascent decelerated above Cbs

 (radiative cooling), accelerated in
 outflow where anvils have dissipated 

•  Cirrus desiccate air during ascent by
 nearly 100x (relative to air mass flux) 

(Lelieveld et al., ACP, 2007) 

Vertical water mass flux
 (10-9 kg m-2 s-1), JJA 
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Stratospheric Water Vapor 
•  New 40-year simulation

 with EMAC, effects of   
 ENSO, Volcanoes, etc.  

H2O, ppmv, 97 hPa 

Cloud ice, ppmv, 97 hPa 

For more, see posters by:  
•  Andreas Baumgärtner  
•  Christoph Brühl 

Dehydration over Pacific in
 winter (DJF, 1992) 

Moistening over S. Asia in
 summer monsoon (JJA,
 1992) 
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CONVECT Submodel (in EMAC) 

•  Tost et al. (ACP, 2006) – different convection parameterisations: 
–  Modified Tiedtke (1989) (Nordeng, 1994) 
–  ECMWF Tiedkte-scheme (IFS cycle 29r1b, Tompkins et al., 2004) 
–  Zhang-McFarlane (1995) + Hack (1994), including precipitation

 evaporation extension (Wilcox, 2003; Lang and Lawrence, 2005) 
–  Bechtold-scheme (2001) 
–  Emanuel and Zivkovic-Rothman (1999) 
–  Others in progress 

•  Mostly based on the mass flux approach (Arakawa and Schubert, 1974) 

•  Differences: 
–  trigger criterion, closure, entrainment formulation, microphysics,

 programming style and efficiency...... 

(Tost et al., ACP, 2006) 
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Precipitation Distribution 

GPCP (Observations) 

ECMWF 

Bechtold 

Tiedtke - Nordeng 

Zhang – McFarlane – Hack 

(Tost et al., ACP, 2006) 
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Convective Massfluxes 

Tiedtke – Nordeng 

Bechtold 

ECMWF 

(based on Tost et al., ACP, 2006) 

Zhang – McFarlane – Hack 

See talk by
 Holger Tost
 at IGAC in
 Annecy for
 the newest
 results! 
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Reinterpreting Studies of Deep Convective Transport
 Effects on Tropospheric O3 and Other Tracers 

•  Simulations with convective transport turned off for various tracers used in several previous studies
 (e.g., Lelieveld and Crutzen, 1994; Mahowald et al., 1997; Collins et al., 1999; Lawrence et al., 2003;
 Lintner, 2003; Doherty et al., 2005; Erukhimova and Bowman, 2006) 

•  Interpretation frequently neglected contribution by “equivalent deep convective mass fluxes” present in
 vertical velocities used in advection schemes 

•  Potentially significant underestimates or misrepresentations of effects of convective transport 

•  Particularly important to consider in designing and interpreting simulations for AC&C Activity 2 

•  Several other implications (e.g., numerical diffusion) 

fnl floc 

FCD FCS 

fart 

fms 

FLS 

fdcc 

flad 
-FLS 

Deep Convection Advection 

X 

FCU 

(Lawrence and Salzmann, ACPD, 2008) 
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Summary/Outlook 

•  Many different aspects of deep cumulus convection,            
 including effects on chemistry via: 
–  Transport 
–  Water Vapor 
–  Scavenging 
–  Multiphase reactions 
–  Photolysis  
–  Lightning NOx  
–  etc. 

•  Continued use of a combination of tools:               
 global and cloud resolving models 

•  Synergetic application of models and measurements  
 (in situ and satellite) 


