

1

SPARC: quo vadis?

Tom Peter & Ted Shepherd Co-chairs of SPARC SSG

Background

- All WCRP core projects (including SPARC) are supposed to wind down in about 5 years' time
- They will be replaced by a new WCRP structure that is yet to be determined
- The goal is to position the WCRP (more precisely, the community it represents) to be more responsive to societal needs

Why should we care?

At their best, international projects can significantly enhance the quality of our science by

- Filling gaps and crossing boundaries
- Providing scientific leadership
- Creating synergies and fostering collaborations
- Creating funding opportunities

 e.g. by creating 'pipelines' from research to
 international science assessments

Motivation

- The world of climate science has changed dramatically since the WCRP structure was set up in the early 1990's
 - Governments seem to feel that climate science is "done" and we need only to work on impacts and adaptation
 - There is increasing emphasis from funding agencies on demonstrating the tangible benefits of research
- The status quo does not appear to be viable in the long term

The role of WCRP

- WCRP's core mission is two-fold
 - To determine and improve the predictability of climate (i.e. quantify the uncertainty in climate predictions)
 - To quantify and mitigate the impact of anthropogenic activity on climate
- This mission is felt to still be relevant
 - However there will need to be increasing cooperation with partners (e.g. IGBP)

The role of SPARC

- SPARC has been developing an increasingly close relationship with IGAC
 - Should allow a long-term home for chemistryclimate interactions
- However the dynamical aspects of SPARC need to be better integrated with relevant tropospheric activities

Also data assimilation/seamless prediction

SPARC Legacy

- Beyond 2013, we anticipate that certain SPARC functions will need to be maintained:
 - Chemistry-climate model validation (CCMVal)
 - Assessment of key uncertainties in measurements
 - Linking various scientific communities
 - measurement and modeling communities
 - stratospheric research community and the climate modeling (as in IPCC) community
 - synergy between organizations (WCRP, IGBP, ...)

Key science questions

Scientific themes that we might envisage to remain relevant post-2013:

- Quantify the interaction between ozone recovery and climate change
- Foster stratospheric science in climate accountability, mitigation and adaptation
- Investigate air quality aspects of the tropospherestratosphere system
- Quantify the impact of solar variability (on all time scales) on climate
- Elucidate role of polar regions in global climate

Example of a possible model for WCRP restructuring

- Long-term climate change (joint with IGBP) input into mitigation needs
- (Multi-)decadal predictability input into impacts needs
- Regional climate downscaling direct input to users
- Improving the models (joint with WWRP) "connecting climate physics to climate modelling" (cf. P. Morel article in GEWEX Newsletter)
- Air quality and biosphere impacts (joint with IGBP)

What next?

- We seek your feedback to carry back to the WCRP
 - This cannot just be imposed from above
- The right structure must resonate with
 - the scientific community
 - funding agencies

because that is how the work gets done

- We especially want to hear from the younger scientists
 - This will affect the landscape of your careers!

- Improve climate models via data assimilation
- Improve climate models via use of mesoscale/cloud-resolving models
- Quantify the impact of vertical domain and resolution in the middle atmosphere in climate modelling
- Improve decadal stratospheric ozone predictability
- Improve seasonal climate predictability

- Improve understanding of climate variability in the stratosphere
- Improve modelling of chemistry-climate coupling in the stratosphere-troposphere system
- Quantify the role of the polar regions in global climate
- Quantify effects of future stratospheric change on the global carbon cycle
- Critically assess Geoengineering