

Estimating when the Antarctic ozone hole will recover

Paul A. Newman, E. R. Nash, A. R. Douglass, J. E. Nielsen, S. Pawson, and R. S. Stolarski SPARC 4th General Assembly Sep. 3, 2008, Bologna, Italy

Science Questions

- When will the Antarctic ozone hole recover?
- What are the milestones?
- What can modify recovery?

Outline

- What do we mean by recovery?
- Chlorine & Bromine recovery.
 - Antarctic equivalent effective stratospheric chlorine (EESC)
- Model estimates of ozone recovery
- Climate change impact on recovery
- Summary

Sep 24 2003

Antarctic ozone hole - 2000

Antarctic ozone hole - 2020

Antarctic ozone hole - 2060+

World Avoided: poster P66

Ozone Recovery - WMO (2007)

Hofmann et al. (1997)

- Equivalent CI shifted 3 year, Br amplification of 40
- South Pole Dobson observations and ozonesondes to 1995
- First detection of recovery is observed in 2018 for column ozone and 2008 for the 12-20 km sonde average
- Loss rate estimate yields a first detection in 2010
- Final recovery observed in 2050

Ozone hole area parametric modeling

Model size estimates

WMO (2007)

Recovery estimates

Antarctic chlorine and bromine levels

Antarctic EESC 1970-2004

EESC is estimated from: 1) surface observations, 2) an age-of-air spectrum, and 3) age dependent fractional release values.

To obtain EESC values (1950-2100) See: http://code916.gsfc.nasa.gov/Data_services/automailer/restricted/automailer.html

Antarctic EESC

EESC projections from: **1) estimated emissions, 2) estimated ODS lifetimes**, 2) an age-of-air spectrum, and 3) age dependent fractional release values.

To obtain EESC values (1950-2100) See: http://code916.gsfc.nasa.gov/Data_services/automailer/restricted/automailer.html

Model EESC

Figure 1. Eyring et al. (2007): "The CCMs show large differences in peak Cly and timing of when future values have returned to modeled 1980 values, which is a major cause of the differences in simulated ozone recovery, in particular in the Antarctic."

All models driven by WMO (2003) scenario Ab.

Uncertainty: Chlorine & Bromine

- Is our Scenario "Ab" correct?
 - How well do we understand mean age-of-air, and degradation of ODSs (CFCs and Halons) as they move through the stratosphere? Correct lifetimes for ODSs?
 - How well do we understand the budget of CI & Br over Antarctica?
 - What will happen with HCFCs?
 - How will climate change alter lifetimes and transport in the stratosphere
- Do our models correctly represent levels of Cl_y and Br_y over Antarctica?
 - Transport (more than just mean age)
- Chemistry (bromine levels, photolysis rates, e.g., recent
 Sep 2 Pope et al. discussions)

Ozone vs. time

Ozone Resid. Vs. Temp.

Lower stratospheric ozone negative (positive) anomalies related to decreased (increased) downward circulation in middle stratosphere over the winter

Climate change impact on recovery

Temperature Trend

T vs. heat flux

the wave driving from the troposphere strengthens.

This would act to accelerate recovery. Correct?

Uncertainty: climate change

- Climate change
 - Will the Brewer-Dobson circulation accelerate & why? How will this affect lifetimes, release values, ozone advection?
 - How will the wave driving change?
 - How will temperatures change?
 - Since polar ozone is also tied to the vertical descent rates, models **must** correctly capture the circulation and those processes that affect the circulation.
- Climate change appears to be accelerating recovery but not by much

Sep 24 2003

Summary

- The recovery of polar ozone (2060s) is now recognized to be different than in the mid latitudes (2040s).
- The ozone hole will fully recover by 2067±10. The first stage of recovery will be seen in about 2023.
- The primary factor behind recovery is the decrease in Cly and Bry. The recent regulation of HCFCs will bring full recovery earlier by about 3 years.
- Climate impact will accelerate recovery, but remains uncertain