Imperial College London

Trends in, and influences on, the vertical structure and seasonal evolution of the Antarctic polar vortex

Joanna D. Haigh, Imperial College London, UK Howard K. Roscoe, British Antarctic Survey, Cambridge, UK

- Seasonal evolution of Antarctic polar vortex: definition of final warming date
- Long-term variations in polar temperatures, SAM: role of polar ozone, influence of other factors (QBO, solar variability, volcanic aerosol, ENSO)

Data

- Radiosonde temperatures 100, 70, 50, 30 hPa: Halley (1957-2007), South Pole (1961-2007) (twice) daily (with gaps)
- NCEP Reanalysis: temperatures 700-30hPa 60-90°S average, monthly means 1979-2005
- SAM index, time series of weighting of 1st EOF of NCEP geopotential heights 20-90°S, monthly means 1979-2005
- ERA-40 operational analysis pressure velocity at 500h Pa zonal mean, monthly means1958-2001

Vortex seasonal evolution

How to define the final warming date? Waugh (1999), Zhou (2000), Karpetchko (2005): vortex spatial diagnostics Black (2007): jet core zonal wind speed

All rely on thresholds – problem if in context of long term T trends ?

Final warming date definition

Final warming dates

Final warming dates (comparison of stations)

Multiple regression analysis: forcing indices

Regression results: de-seasonalised SAM index

© Imperial College London

Multiple regression analysis: Solar*QBO index

Regression results (SAM): alternative indices

Page 11

© Imperial College London

Regression results (SAM): alternative indices

Page 12

© Imperial College London

Regression results: final warming dates from radiosonde data

S.Pole

Pressure	OMD		linear	
(hPa)	Days (1998 cf pre-1980)	t-value	Days (over 49 years)	t-value
100	29	7.5	32	4.5
50	16	3.6	17	2.4
30	8	1.3	-1	0.2

Halley

Pressure	OMD		linear	
(hPa)	Days		Days	
	(1998 cf	t-value	(over 49	t-value
	pre-198		years)	
	0)			
100	20	5.9	19	3.8
70	21	4.4	21	2.6
50	18	3.0	13	1.5
30	17	2.3	2	0.2

bold = 5% signif

SPARC 3 Sep 2008

Page 13

No other index produced significant results

Final warming dates: monthly zonal mean NCEP temperatures 60-90°S

Regression results: monthly zonal mean NCEP temperatures 60-90°S

Contours: signal derived for given forcing index Shading: 5,10, 20% significance levels Bold lines: "final warming date" at high (dashed) and low (solid) value of index

© Imperial College London

Temperatures at high and low OMD states

Contours: temperature at high (dashed) and low (solid) value of index Bold lines: "final warming dates"

Higher values of OMD result in later warming from middle stratosphere through to mid-troposphere

Page 16

© Imperial College London

Regression results: monthly zonal mean NCEP temperatures 60-90°S

Contours: signal derived for given forcing index Shading: 5,10, 20% significance levels Bold lines: "final warming date" at high (dashed) and low (solid) value of index

OMD signal in zonal mean pressure velocity (500 hPa)

Summary

- Simple definition of final warming date based on temporal evolution of temperature.
- Final warming dates show response to ozone recovery.
- Long-term trends more strongly related to stratospheric ozone depletion than to linear climate change.
- Stronger response to compound solar*QBO index than to these factors separately.
- Delay in final warming date due to ozone depletion (and also to solar*QBO) from mid-stratosphere to midtroposphere:

not downward propagation of an anomaly but delay in normal behaviour (but need to understand that!)