Impact of recent laboratory measurements of the absorption cross section of CIOOCI on our understanding of polar ozone chemistry

Markus Rex, Robyn Schofield Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany Markus.Rex@awi.de

R.J. Salawitch, T. Canty University of Maryland, Maryland, USA

Polar ozone loss process

Kinetics of the dimer cycle

Balance of CIO / CIO_x and ozone loss rate are governed by:

Step (1): "Forward Reaction"

CIO + CIO \xrightarrow{M} CIOOCI, Rate = $k_f \times [CIO]^2$

Step (2): "Thermal decomposition" CIOOCI \xrightarrow{M} CIO + CIO, Rate: k_b x [CIOOCI]

 $k_{eq} = k_f / k_b$

Step (3): "Photolysis" $CIOOCI + hv \rightarrow CI + CIOO \xrightarrow{M} CI + CI + O_2$ Rate = $J_{CIOOCI} \times [CIOOCI]$

Step (4): Cl + $O_3 \rightarrow ClO + O_2$:

Rapid. CIO/CIO_x and ozone loss rate not sensitive on rate of step (4).

Model uncertainties

Monte Carlo simulations of model uncertainties hundreds of model runs distributed according to the uncertainties stated in JPL2006

=> up to a factor of 3 uncertainty due to uncertainty in gas phase kinetic data

Frieler et al., PhD work, 2006

24 hour average ozone loss rate versus k_f

195 K, 50 hPa, early February, $CIO_x = 2 \text{ ppbv}$, little sensitivity on k_{eq}

24 hour average ozone loss rate versus k_{eq}

195 K, 50 hPa, early February, $CIO_x = 2 \text{ ppbv}$, little sensitivity on k_f

24 hour average ozone loss rate versus J

195 K, 50 hPa, early February, $CIO_x = 2 \text{ ppbv}$, little sensitivity on k_{eq}

Calculated ozone loss rate is highly sensitive on uncertainties in J

=>

Sources of model uncertainties

from Monte Carlo simulations

Frieler et al., PhD work, 2006

Sources of uncertainty in J

 $J = \int \sigma(\lambda) \cdot \Phi(\lambda) \cdot I(\lambda) \, d\lambda$

absorption cross sections: from lab measurements

Quantum yield: 0.9 -1.0

Actinic flux (i.e. photon flux): calculated with radiation transfer model

Measurements of CIOOCI cross sections

AWI

24 hour average ozone loss rate versus J

195 K, 50 hPa, early February, $CIO_x = 2 \text{ ppbv}$, little sensitivity on k_{eq}

=> Calculated ozone loss rate drops by more than a factor of two if Pope et al. cross sections are used

CIO_x required to reproduce observed ozone loss rates

based on model with different assumptions for $\,\,\sigma_{\text{CIOOCI}}$

based on Frieler et al., 2006; WMO 2006

CIO_x required to reproduce observed ozone loss rates

based on model with different assumptions for σ_{CIOOCI}

update of Frieler et al., 2006; WMO 2006

Overall polar ozone loss rate versus JCIOOCI

model constraint by measurements during SOLVE flight 000202 ozone loss rates from Match

Diurnal variation of CIO Data from SOLVE 2000

EUPLEX 2003 Self-Match flight January 30, 2003

- Individual air masses probed before and after sunset.
- Success of flight planning confirmed by contrail intersections.
- Sensitivity of [CIO] on k_{eq} changes steeply at sunset.

=>

k_{eq} can be derived from measurements of [CIO] alone, without making assumptions on [CIO_x] or [CIOOCI]

if [CIO_x] is constrained by measured [CIOOCI], J can be derived

Schofield et al., 2008

k_{eq} from EUPLEX self-match flight

Schofield et al., 2008

SPARC General Assembly 2008

J from EUPLEX self-match flight

Schofield et al., 2008

SPARC General Assembly 2008

Atmospheric measurements show that:

- Based on standard chemistry observed ozone loss rates
 - -agree best with models that are based on $J_{\mbox{\scriptsize Burkholder}}$
 - $-J_{JPL06}$ recommendations are within uncertainty
 - -marginal agreement for $J_{Huder\&DeMore}$
- If J is anywhere close to J_{Pope}, a large fraction of the observed ozone loss can not be explained by standard chemistry
- If Pope et al. 2007 is correct an unknown mechanism breaks down CIOOCI and is responsible for most of the observed ozone loss

Daytime loss vs. nightime loss

- loss of ozone only in sunlight
- no change in darkness

Relation between ozone loss rate and temperature history

February, data from all years, Θ =450-500K

SPARC General Assembly 2008

AWI

Constraints for potential mechanisms:

- (1) Daytime CIO production needs to mimic "Burkholder photolysis" (Stimpfle et al., 2004). This applies to both, am and pm conditions !
- (2) Nightime source of CIO (based on several observations of CIO during night)
- (3) Ozone loss rates are as calculated with a model using "Burkholder photolysis" (Frieler et al, 2006)

Potential mechanisms

Potential mechanisms fall into two categories:

(1) Direct mechanism: $CIOOCI + X \rightarrow ... \rightarrow CI + CI + O_2$ (without photolytic step)

(2) Formation of an unknown nightime reservoir (Cl~) $CIOOCI + X \rightarrow Cl \sim + ...$ $Cl \sim + h_V \rightarrow ... \rightarrow Cl + Cl + O_2$

(1) Direct mechanism $C|OOC| + X \rightarrow ... \rightarrow C| + C| + O_2$

- k x [X] roughly equals $J_{Burkholder}$ for all sza, for am and pm
- collision rate theory: daytime abundance of X > 10 pptv
- => BrO and CIO are options
 - X=CIO is probably not consistent with Bloss et al., 2001
 - X=BrO model fails to reproduce diurnal variation of CIO

=> direct mechanism appears to be unlikely

(2) Formation of an unknown nightime reservoir (CI~) $CIOOCI + X \rightarrow CI~ + ...$ $CI~ + hv \rightarrow ... \rightarrow CI + CI + O_2$

• "efficient photolysis" similar to Burkholder photolysis:

 $J_{ClOOCl_Pope} \times [ClOOCl] + J_{Cl^{\sim}} \times [Cl^{\sim}] = J_{Burkholder} \times [Cl_{Havard}]$

 $(Cl_{Havard} = total CI in all species that are seen as CIOOCI in Harvard type instruments, i.e. all species that decompose into CIO at T~370K, without also producing CI atoms)$

am/pm differences in efficient J ?

measurements during EUROSOLVE/SOLVE 2000 analysis like in Stimpfle et al.(2004), but am/pm separately

=> CIO production rate similar to J_{Burkholder} x [CI_{Havard}] for all sza, for both am and pm
 => slow buildup of unknown nighttime reservoir over night can be ruled out

(2) Formation of an unknown nightime reservoir (CI~) $CIOOCI + X \rightarrow CI~ + ...$ $CI~ + hv \rightarrow ... \rightarrow CI + CI + O_2$

=> either reaction is rapid and converts all CIOOCI to CI~

=> or rapid equilibrium between CIOOCI and CI~

(2) Formation of an unknown nightime reservoir (CI~)

(2.1) Rapid conversion of CIOOCI into unknown nighttime reservoir CI~

- CIOOCI does not exist at all; CI~ is the only nighttime reservoir
 => J_{CI} = J_{Burkholder} (for all sza)
 => CI~ is either CI₂, CI₂O (or CI₂O₅)
- observations of high CIO during warm nights => nighttime source of CIO
- "CIOOCI" measurements of Havard type instruments => CI~ needs to decompose thermally => rules out Cl₂

 \Rightarrow Cl~ is Cl₂O (or Cl₂O₅)

=> reaction partner X is an odd oxygen species with VMR >> 10pptv => X could be O₃ (or N₂O, HNO₃)

• gas phase reaction with O_3 is too slow (DeMoore and Tschuikow-Roux, 1990)

=> heterogenous mechanism (EUPLEX: on sulfate !) ?

- surface area densities needed (collision rate theory): 10μm²cm⁻³
- available: $\sim 1 \mu m^2 cm^{-3}$

(2) Formation of an unknown nightime reservoir (CI~)

(2.2) Back reaction also exist, CIOOCI and CI~ coexist close to equilibrium

=> $J_{Cl^{\sim}}$ >> $J_{Burkholder}$; shape of $J_{Cl^{\sim}}(sza) \sim J_{Burkholder}(sza)$

$$=> CI \sim = CICIO_2 !? CI - CIO_0$$

Rapid equilibrium between CIOOCI and CICIO₂ ($_{CI - CI}$)?

 $ClOOCI \Leftrightarrow ClClO_2$ barrier too high

e.g. by: CIOOCI + CIO \rightarrow CICIO₂ + CIO CICIO₂ + CIO \rightarrow CIOOCI + CIO

=>

~10% of CI_2O_2 in the form of $CICIO_2$ leads to "Burkholder like" photolysis of the mixture

Temperature dependend equilibrium could explain SOLVE / EUPLEX differences in efficient J and k_{eq}

CIO and CIOOCI observations

Model that

- is based on J_{ClOOCl} from Pope et al.
- and includes the "CICIO₂-mechanism"

reproduces all available observations of CIO and CIOOCI. It even reproduces the SOLVE / EUPLEX differences, that are hard to resolve with a model based on standard chemistry

But !

- To explain observed ozone loss photolysis of CICIO₂ would have to restore the O-O bond !
- New upper limits for the abundance of CICIO₂ in the atmosphere are an order of magnitude to low (Jucks et al. in preparation, limit derived from Stimpfle et al., 2004)

Conclusions

- Uncertainties in J_{CIOOCI} limit our ability to model polar ozone loss quantitatively
 - Based on JPL06 uncertainties (i.e. even without considering Pope et al., 2007), modeled ozone loss rates have up to a factor of three uncertainty.
- If Pope et al. (2007) is correct:
 - An unknown breakdown mechanism for CIOOCI exists
 - Most of the observed ozone loss is due to this unknown mechanism
- It is extremely hard to reconcile Pope et al. (2007) with atmospheric measurements
 - Mechanism has to mimic photolysis according to Burkholder et al. cross sections.
 - Most potential mechanisms are not consistent with in-situ data of CIO, observed ozone loss rates or lab studies.
- New lab measurements of the CIOOCI cross section needed to resolve this issue (several under way)
- SPARC initiative on chlorine chemistry (led by M. Kurylo and B.-M. Sinnhuber). Info: https://sparchpo.icg.kfa-juelich.de/SPARCHPO

Conclusions

• Uncertainties in J_{CIOOCI} limit our ability to model polar ozone loss quantitatively

Based on JPL06 uncertainties (i.e. even without considering Pope et al., 2007), modeled ozone loss rates have up to a factor of three uncertainty.

- Based on standard chemistry observed ozone loss rates:
 - agree best with models that are based on J_{Burkholder}
 - J_{JPL06} recommendations are within uncertainty
 - J_{Huder&De Moore} would require to push all uncertainties to the limits
- If J is anywhere close to J_{Pope}, a large fraction of the observed ozone loss can not be explained by standard chemistry
- Ozone loss occurs only in sunlight
- Ozone loss occurs only in air masses that have been exposed to temperatures below 195K

The Match Project

e.g. Rex, 1993; von der Gathen et al., Nature, 1995; Rex et al., Nature, 1997

AWI

Match campaigns

- 35 stations
- ~500-1200 ozonesondes per winter
- >1000 match events per winter
- 11 Arctic and 2 Antarctic campaigns since the early 90ies (EU + natl. funding)

based on Newman et al., JGR, 2002

SPARC General Assembly 2008

WMO, 2003

Results from measurements of CIO / CIOOCI

all values relative to JPL-06 estimates are based on known chemistry

• k_{eq}

- SOLVE: k_{eq} = 50% best fit

- EUPLEX self-match: $k_{eq} = 20\%$ best fit; $k_{eq} \le 40\%$

• J

- SOLVE: J = 150% best fit; J \ge 75%

- EUPLEX self match: J >> 200% best fit

- Pope et al.: J = 16% (~ 9 times smaller than in-situ suggests)

=>

- No overlap between uncertainties from in-situ estimates of J and Pope et al.
- Discrepancies appear to be larger for warmer conditions

Potential solutions: (1) Direct mechanism

Breakdown of CIOOCI directly recycles CI:

$$CIOOCI + X \rightarrow \dots \rightarrow CI + CI + O_2 + Y$$

Collision rate theory and diurnal variation: X = BrO

Thermodynamically only CIOOCI + BrO -> CIOO + BrOCI can occur

Thermal decomposition of BrOCI has to be rapid to prevent loss of bromine to BrOCI

¥

Model that includes this mechanism does not reproduce diurnal variation of CIO

Not likely

SPARC General Assembly 2008

AW

Potential solutions (2)

(2.1) CIOOCI does not exist at all; CI~ is the only nighttime reservoir

=> J_{CI} = $J_{Burkholder}$ => CI = CI_2O (or CI_2O_5), X = O_3 => gas phase reaction too slow (DeMoore and Tschuikow-Roux, 1990) heterogenous mechanism (EUPLEX: on sulfate !) ? => surface area densities needed (collision rate theory): $10\mu m^2 cm^{-3}$ => available: $\sim 1\mu m^2 cm^{-3}$

(2.2) Back reaction also exist, ClOOCI and Cl~ coexist close to equilibrium => J_{Cl}~ > J_{Burkholder}; J_{Cl}~(sza) ~ J_{Burkholder}(sza) => Cl~ = ClClO₂ !? Formation e.g. by reaction ClOOCI + ClO or ClOOCI + ClOOCI => to explain observed ozone loss photolysis of ClClO₂ would have to restore the O-O bond !

Research needs

- Verify Pope et al. (2007) results in the lab
- Measure CIOOCI cross sections in O₂ atmosphere
- Identify photolysis products of CICIO₂, CIOCIO (lab and ab initio calculations)
- Measure IR/microwave spectra of CICIO₂ and CIOCIO and look for features of these species in existing IR/microwave data sets.
- Study dynamics of CIO/CIOOCI system in-situ, preferably with match flight patterns extending from local noon to late night and including am and pm measurements.

=> model based on J_{Burkholder} reproduces observed loss rate

am/pm differences in efficient J ? measurements during EUROSOLVE/SOLVE 2000

=> no significant am/pm difference in efficient J

J_{Pope} and SOLVE data measurements during EUROSOLVE/SOLVE 2000

=> J_{Pope} is not consistent with data and known chemistry

AWI

Theoretical understanding of loss process

measurements of CIO_x (CIO + $2CI_2O_2$) during EUROSOLVE/SOLVE 2000

Frieler et al., GRL 2006; WMO 2006

Theoretical understanding of loss process

measurements of CIO_x (CIO + $2CI_2O_2$) during EUROSOLVE/SOLVE 2000

Frieler et al., GRL 2006; WMO 2006

am/pm differences in efficient J ?

measurements during EUROSOLVE/SOLVE 2000 analysis like in Stimpfle et al.(2004), but am/pm separately

=> CIO production rate similar to J_{Burkholder} x [Cl_{Havard}] for all sza, for both am and pm) Cl_{Havard} = total CI in all species that decompose at T~370 K

=> J_{Pope} is not consistent with data and known chemistry

AWI

AWI

Overall polar ozone loss rate versus JCIOOCI

model constraint by measurements during SOLVE flight 000202 ozone loss rates from Match

=> Best fit for J_{Burkholder}, J_{JPL06} within uncertainties => no overlap of uncertainties for J < J_{Huder&DeMore}

AWI

ozone loss rate by CIO+CIO versus J_{CIOOCI}

=> J_{Pope} leads to reduction by more than 80%
 => CIO dimer cycle is no longer a major loss cycle

ozone loss rate by CIO+BrO versus J_{CIOOCI}

=> J_{Pope} leads to reduction by ~50%

CIO / (CIO + 2CIOOCI) versus J_{CIOOCI} sza = 82.5°, pm, little sensitivity on keq measurements during SOLVE 2000, flight 000202

=> $J_{Burkholder}$ results in best fit to data (consistent with Stimpfle et al., 2004) => J_{Pope} is not consistent with in situ data => if correct: unknown chemistry

AWI

