

A new approach for a tracer budget of the extratropical lower stratosphere using simultaneous measurements of SF₆ and CO₂

H. Bönisch¹, A. Engel¹, J. Curtius¹ and P. Hoor²

¹Institute for Atmospheric and Environmental Sciences, J. W. Goethe University of Frankfurt, Frankfurt am Main, Germany ²Max Planck Institute for Chemistry, Air Chemistry Department, Mainz, Germany

Research Questions

The UTLS is a key region for understanding and predicting future chemical-climate change. [e.g., Forster and Shine, 1997]

=> Estimate the chemical impact of the transported species on the composition of the lowermost stratosphere (LMS).

=> New approach: Trace gas budget for the LMS including mean transit times

Trace Gas Budget - Concept

Tropospheric time series of SF_6 and CO_2 in the tropics

GOETHE

UNIVERSIT

Trace Gas Budget - Method

Basic equation for tracer budget calculation

$$\chi(\mathbf{r},\mathbf{t}) = \alpha_1 \int_{0}^{\infty} \chi(\Omega,\xi) \cdot G_1(\Gamma_1,\xi) d\xi$$
$$+ \alpha_2 \int_{0}^{\infty} \chi(\Omega,\xi) \cdot G_2(\Gamma_2,\xi) d\xi$$

Subject to the constraints

$$\alpha_1 + \alpha_2 = 1 \text{ and } \int_0^{\infty} G_1 d\xi = \int_0^{\infty} G_2 d\xi = 1$$

Mass

conservation

Standardization

Open parameters of the equations system for SF_6 and CO_2

Tropospheric Fraction: $\alpha_1 = ?$ and Mean Transit Time: $\Gamma_1 = ?$

Stratospheric Fraction: $\alpha_2 = 1 - \alpha_1$ and Mean Transit Time: $\Gamma_2 = 3$ years

SPURT Data Set - UT/LMS Coverage

SPURenstofftransport in der Tropopausenregion

8 campaigns 36 flights during a time period of two years (2001-2003)

GOETH

Each season probed twice

SPURT 1 to 8 flight tracks

- —— Spurt 1: Faro Kiruna
- —— Spurt 2: Casablanca Gran Canaria Lissabon Tromsö
- Spurt 3: Jerez Tromsö
- Spurt 4: Monastir Keflavik
- —— Spurt 5: Sevilla Keflavik
- Spurt 6: Faro Tromsö Longyearbyen
- Spurt 7: Kiruna Lissabon
- Spurt 8: Faro Tromsö

Trace gas budget – Tropospheric fraction α_1

Minimum tropospheric contribution

Maximum tropospheric contribution

Seasonality of N₂0 in the LMS

Figure: N₂O distribution in the LMS as a function of equivalent latitude and potential temperature derived from SPURT in-situ measurements. Black solid lines mark PV-Isolines.

Trace gas budget -Mean transit time Γ_1

longest transit times

shortest transit times

Changing trace gas composition between summer and autumn

Mean Age of Air

Water Vapor

Figure: Mean age of air (left panel) and water vapor (right panel) distribution in the LMS as a function of equivalent latitude and potential temperature derived from SPURT in-situ measurements. Black solid lines mark PV-Isolines.

Conclusions

- •Tropospheric contribution in the LMS maximize in October (on average: $\alpha_1 > 90$ %) and minimize in April (lowest values: $\alpha_1 < 20$ %)
- -During all seasons tropospheric fractions α_1 >60% can occasionally be found in the LMS, even for PV>8 pvu
- •Mean transit times in the LMS minimize in August (Γ_1 <0.2 years) and maximize in May (Γ_1 >0.5 years), whereby Γ_1 increases continuously.
- In summary, we conclude that the LMS is flushed with tropospheric air during summer and that this in-mixing can be traced back till the end of spring the following year.

Outlook

 Implementing both passive tracers SF₆ and CO₂ in model experiments in order to evaluate modelled transport into the LMS (Boenisch et al., 2008)

And

 Applying the trace gas budget method on model simulations of both tracers

(see Poster P7 : "First results of a model evaluation based on a tracer budget of the extratropical lower stratosphere applied on simulated and measured SF_6 and CO_2'').

Acknowledgements

- Funding of the SPURT project by the AFO 2000 program of the German Ministry for Education and Research (BMBF).
- Globalview-CO₂ project for the CO₂ tropospheric reference data
- NOAA/ESRL Global Monitoring Division, Halocarbons and other Atmospheric Trace Species Group (HATS) for the SF₆ tropospheric reference data
- **C. Gurk** and Horst Fischer from MPI for Chemistry Mainz for the SPURT CO₂ data
- M. Krebsbach from University Wuppertal, C. Schiller and N. Spelten from Research Centre Jülich for the SPURT H₂O data
- H. Wernli from University Mainz and D. Brunner from EMPA Switzerland for meteorological support of the SPURT campaigns
- We would like to thank also the enviscope GmbH (Frankfurt a. M., Germany) and the GFD (Gesellschaft für Flugzieldarstellung) for the excellent co-operation and support during the aircraft campaigns

Downward mass flux into the LMS

Figure: Downward mass flux through 380 K isentrope (index 380) and 118 hPa isobar (index 118) surface for Northern (index NH) and Southern (index SH) hemisphere (Appenzeller et al., 1996). The figure is taken from Hegglin et al. (2004).

Structure of the LMS -Tropopause following mixing layer

Phase lag between Troposphere and Stratosphere

a) 385 $\Delta \Theta$ [K] 40 - 60380 20 - 40CO₂ [ppmv] 0 - 20375 -20 - 0 370 365 1.1.2002 1.7.2002 1.1.2003 1.7.2003 1.7.2001 time

Hoor et al. 2004

CO equilibrium value

Hoor et al. 2004

Propagation of tropospheric CO₂ amplitude into LMS

GOETHE UNIVERSITÄT

Water vapour in the LMS

Figure: Seasonal variation of the water vapour distributions in the LMS (Engel et al. 2006). The curves indicate the PV-isolines.

