The role of tropospheric dynamics in stratosphere/troposphere coupling

Dave Thompson, CSU

SH annual mean zonal mean zonal wind

SH annual mean zonal mean zonal wind

flux of zonal momentum by eddies

[U] regressed on SH annular mode

[U] regressed on SH annular mode

the climatology and variability of the tropospheric flow are both strongly dependent on the momentum fluxes

Regressions on NAM at 10 hPa

timescale suggests stratospheric influence

eg Baldwin and Dunkerton 2001

EP fluxes regressed on NAM at 10 hPa

the tropospheric response to stratospheric variability is also strongly dependent on the momentum fluxes.

from Thompson, Furtado, Shepherd 2006

the problem...

- it's clear how the momentum fluxes impact the wind and temperature fields
- it's less clear how the wind and temperature fields impact the momentum fluxes

we know such feedbacks exist

Ring and Plumb 2007

but we re not sure exactly how such feedbacks operate. one possibility:

changes in lower tropospheric baroclinicity

Robinson 2000; Lorenz and Hartmann 2001

waves propagate meridionally in upper troposphere; momentum flux converges in stirring region

how does this relate to stratosphere/troposphere coupling?

a) burrowing meridional circulation: DCWEF (Robinson 2006) b) longwave radiative fluxes from stratosphere (Grise/Thompson/Forster 2008)

a second possibility:

increased [U] -> higher Cph -> waves break farther poleward

Chen and Held (2007; see also Wittman et al. 2007)

understanding the eddy response to changes in the mean flow is key for understanding stratosphere/troposphere coupling.

it is also key for understanding the climate response to anthropogenic emissions

understanding the eddy response to thermal forcing (Butler and Thompson in prep)

Pressure (hPa)

Zonal-mean Zonal Wind Control Climatology and Mean Response (m/s)

Total Eddy Momentum Flux Control Climatology and Mean Response (m²/s²)

eg Polvani and Kushner 2002

see also Eichelberger and Hartmann 2005

conclusions....

- we know tropospheric eddy feedbacks amplify tropospheric forcing
- we know they almost certainly amplify stratospheric forcing
- we know they are key in climate change simulations.
- but we don't know exactly how they operate.

• The amplitude and persistence of the tropospheric response are consistent with the balanced response to stratospheric wave drag/diabatic heating.

• But the barotropic structure of the response requires changes in the tropospheric momentum fluxes.

• Understanding stratosphere/troposphere coupling requires understanding internal tropospheric dynamics.

 Changes in the zonal flow in the lower stratosphere/upper troposphere change the eddy flux of momentum there.

a) circulation driven by stratospheric cooling

b) circulation driven by tropospheric warming

[U] regressed on SH annular mode

stratospheric and tropospheric flow are coupled

simple to visualize how momentum fluxes can drive [U]

