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Bringing the insights and constraints of
numerical weather prediction (NWP)
into the climate-change arena.
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Climate Change is the
“defining issue of our era™

*Ban Ki Moon UN Secretary General



Climate change predictions provide
key input to mitigation policies...
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...and adaptation strategies
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..... and yet projections of climate
change, both globally and
regionally, remain uncertain
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Uncertainty of the First Kind

® Defined as the multi-model ensemble spread
of climate-change projections. Has remained
large since the first IPCC assessment report.

® There I1s a fundamental need to reduce
uncertainty of the first kind. How?




Surface Pressure

2005/2006
Drought

Blocking Anticyclone

How much more
frequently will
blocking events
occur, as a result
of increased levels
of CO,?




quency _
N w

Fre
o

0

Blocking frequency in climate models

Northern Hemisphere blocking frequency for DEMETER hindcasts
November start, 1959-2001, 9-member ensembles
January (third month

CNRM

-90 -45 0 45 90 135 180 225 270

Longitude

E]equgpcy -
p— n (%)

o

ECMWF

ERA-40

\ |

-90 -45 0 45 90 135 180 225 270

Longitude

Fre
o

quency
Mo

Met Office

Q
[

0—90 -45 0 45 20 135180 225 270

Longitude



Uncertainty of the Second Kind

® Associated with biases common to all
members of a multi-model ensemble of
climate models, eg QBO, MJO, blocking,
diurnal cycle...

® More “insidious” than uncertainty of the first
kind — there is currently no agreed method to
quantify, let alone reduce, the impact of
uncertainties of the second kind, on climate

change projections.



Change in Probability of 20th Century Lower/Upper Tercile
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Three Examples of the Potential
Impact of Seamless Prediction
Techniques

« Short-range NWP tendencies to reduce
uncertainty of the first kind

» Seasonal forecast calibration techniques
to quantify uncertainty of the second kind

» Stochastic parametrisation to reduce
uncertainty of the second kind.



A Nonlinear Perspective on Climate
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1. Reducing Uncertainties of the
First Kind Using 6hr NWP
tendencies.

T.N.Palmer and P.J.Webster, 1994: Towards a unified approach to climate
and weather prediction. Global Change. European Commission, EUR
15158en, 265-281.

Rodwell, M.J. and T.N.Palmer, 2007: Using numerical weather prediction to
assess climate models. Q.J.R. Meteorol.Soc., 133, 129-146.
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Soaring global warming ‘can't be ruled out'
19:03 26 January 2005

NewScientist.com news service

Jenny Hogan

The Earth may be much more sensitive to
global warming than previously thought,
according to the first results from a massive
distributed-computing project.

The project tested thousands of climate
models and found that some produced a world
that warmed by a huge 11.5°C when
atmospheric carbon dioxide concentrations
reached the levels expected to be seen later
this century.

This extreme result is surprising because it
lies far outside the 1.4°C to 4.5°C range
predicted by the Intergovernmental Panel on
Climate Change (IPCC) for the same COz-level
increase - a doubling of CO2 concentration
from pre-industrial times. But it is possible
the IPCC range was wrong because its
estimate is based on just a handful of

Enlarge image

The climate modelling software divides
the Earth's surface into boxes hundreds
of kilometres square (image:
Climateprediction.net)

Click to Print

different computer models.

-~
—_

4]

“There are no
obvious
problems with
the high
temperature
models,
Stainforth
says.... The
uncertainty at
the upper end
has exploded,
says team-
member
Myles Allen.”
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Climate: Error vs Sensitivity
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One key parameter in a convection
parametrisation is the entrainment-rate

paramete

Entrainment

turbulent weak

turbulent strong

organized

v

Entrainment

*mixes environmental air into
convective clouds

*is caused by turbulence and/or
organized inflow

*thereby reduces the difference of
cloud to environment, which is the
fuel the cloud thrives on

*strength of its effect depends on
entrainment rate (model
parameter) and difference in
properties of cloud and
environment

*high entrainment rate and/or
very dry environment -> shallow
clouds

*low entrainment rate and/or very
moist environment -> deep clouds
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Advantages of short-range tendency over
conventional methods for assessing
climate models

e Climate variability 1s dominated by a few EOFs (eg
NAO, PNA, ENSO ...etc)

* Hence although individual parametrisations represent
specific physical processes, their impact on climate
can be degenerate, eg different parametrisations

having similar responses

 Leads to classic problem of “compensating errors”

* Hence very difficult to assess what 1s the “best” set of
parametrisations, eg by tuning to 20™ Century climate.

ECMWF &



Diagnosing Climate Error by Short-Range NWP Tendency

T — Tdynamics + Tlong— wave radiation +
short—wave radiation convection +...

Because they represent different physical processes,
Initial tendencies are approximately orthogonal, ie

2

I =]

dynamics

+ HT

short—wave radiation

long— wave radiation

2
*|

2

convection

+

2

+ ...

Hence reducing error in the norm of any one

tendency will reduce error in the total tendency.

Less possibility of compensating error.

o)

ECMWF S



2. Quantifying Uncertainties of the
Second Kind Using Seasonal
Forecast Reliability Diagrams

Palmer, T.N., F.J. Doblas-Reyes, A. Weisheimer and M.J.Rodwell.
2008: Towards Seamless Prediction: Calibration of Climate-Change
Projections Using Seasonal Forecasts. BAMS, 89, 459-470,
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Calibrating Probabilistic Forecasts

wet DJF 1980-2001 precipitation SSA mod thresh
l I I 1 I

observed frequency
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In regions where a multi-model seasonal
forecasts are unreliable (due to
uncertainties of the second kind) then the
climate change signal may similarly be
unreliable.

Use seasonal forecasts to calibrate
climate change projections of
precipitation?



observed frequency

DEMETER Multi-Model Seasonal Predictions

Eastern North America dry DJF

dry DJF 1980-2001 precipitation ENA mod thresh below 1-0.67 DJF pr ENA mod thresh

cal. change freq. below 0.67 DJF 1971-1990 precipitation ENA mod thresh

T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9 1
forecast probability

DEMETER AR4 Uncalibrated AR4 Calibrated
Reliability

0.3 0.5 0.7 0.8 1.1 1.3 1.5 1.7 19 2.1 2.3



observed frequency

Northern Europe dry DJF

Reliability of seasonal
forecasts is poor, hence
discount the strong AR4
probabilities
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Would better decisions be
made (eg with regard to
regional infrastructure
investments for climate
adaptation) using the
calibrated probabillities
compared with the
uncalibrated probabilities?



3. Reducing uncertainty of the
second kind: stochastic-dynamic
parametrisation

Palmer, 2001: A nonlinear dynamical perspective on model error: a

proposal for non-local stochastic-dynamic parametrisation in weather and
climate prediction models. QJ, 127, 279-304.



Medium-Range Ensemble Prediction
Systems must include
representations of model uncertainty
in order that ensemble forecasts are
not overconfident.

To do this, a stochastic
representation of random sub-grid
model uncertainties has been
developed.



T=T

dynamics long— wave radiation

short—wave radiation

convection

+ ...

Represent each sub-grid tendency as a pdf
(Buizza et al, 1999)




Cellular Automaton Stochastic
Ba

- A " a

streamfunction forcing shape
function

G.Shutts, 2005




Stochastic Spectral Backscatter Scheme (SPBS)

Rationale: A fraction of the dissipated energy is scattered upscale and acts as

streamfunction forcing for the resolved-scale flow (LES) (cf Shutts and
Palmer 2004, Shutts 2005)

Total Dissipation rate from Spectral Markov chain: temporal

numerical dissipation, convection, and spatial correlations prescribed
gravity/mountain wave drag.

Berner et al, 2008



Because of the nonlinearities of
climate, this stochastic
representation of model

uncertainty can also reduce
systematic biases in climate
models.



Can adding noise change the
mean state of a system?

Eg ball bearing 1n potential well.

\ Without small-scale

Without small- “noise”, this minimum
might be inaccessible

scale “noise”, this
regime is too
dominant




In this issue

Stochastic physics and climate modelling

Papers of a Theme Issue compiled and edited by Tim Palmer and Paul Williams

28 July 2008
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If an Earth-System model purports
to be a comprehensive tool for
predicting climate, 1t should be

capable of predicting the
uncertainty 1in its predictions.

The governing equations of Earth-
System models should be
inherently probabilistic.




“I believe that the ultimate
climatic models....will be
stochastic, 1€ random numbers
will appear somewhere 1n the time
derivatives.” Lorenz (1975)

Lorenz E.N. 1975. Climatic Predictability. In “The Physical Basis of Climate and Climate Modelling”. WMO
GARP Publication Series No 16. World Meteorological Organisation. Geneva: 265 pp.




. Seamless Prediction and Decadal
Forecasting

e Decadal prediction provides a meeting ground
between the weather and climate communities

% Impact of accurate initial conditions (weather)
% Impact of greenhouse-gas scenarios (climate)

and therefore a focus for seamless prediction
studies.

e Possible contribution to AR5?

SCECMWF




Return to Winter of 2005/6

*How good were the ECMWF seasonal
forecasts for Northern Europe??

*Could these predictions have been
improved if the a) stratospheric polar
vortex, b) the tropics, had been
successfully forecast?



Northern Europe (land & sea) DJF 2005/06 sea level pressure
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Relaxation Formulation

ECMWF model: ox = M (x)

ot
ECMWF model with 0X i
relaxation: E = M(x)-A(x-x")

> Relaxations coefficient, A, depends on longitude,
latitude and height.

» Relaxation for u, v, T and Inp, (same A)
> X' js based on (interpolated) ERA-40 data.




Relaxation Regions
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Experimental Setup

> Model version 32R1 (5/06-5/11 2007)
» T,95 (210 km) with 60 vertical levels

> Initial and boundary conditions as well as x™f: Operational
analyses (interpolated to T, 95L60)

» Ensemble: 17 members (2005111612/to/2005112012/by
/6hrs)

> Period of interest: 1/12/05 bis 28/02/06

» Calibration run (16. November, 1990-2006)

» Control ensemble (observed SST/sea ice)

> Relaxation ensembles (various regions)




Z500 Anomalies (DJF 2005/06)

Control Integration

Observations
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X Anomalies 200-300hPa (DJF 2005/06)

Observations
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Notice: “Observed” anomaly = OD(05/06)-E4(Climate), that
is, different model formulation + vertical resolution



(* Conclusions (I)

e Climate change projections are still uncertain
% Uncertainty of the first kind (multi-model spread)
% Uncertainty of the second kind (common model deficiencies)
e Seamless prediction allows the insights and
constraints of numerical weather forecasting to be
brought to bear on the climate-change prediction
problem

e Decadal prediction is the natural meeting ground
between weather and climate communities. Fertile
area for 2-way interaction

SCECMWF




(* Conclusions (II)

e Middle atmosphere plays a role in tropospheric
climate simulation, but need for major improvements
in our ability to simulate the tropics remains a
priority.

% Need to study how well our ability to simulate climate is
improved using convectively-resolved models.

% Need for dedicated petaflop computing resources for climate
(WCRP Climate Modelling Summit)

SCECMWF




