An Overview of the Dynamics of the Mesosphere and Lower Thermosphere

Charles McLandress SPARC Data Assimilation Workshop September 4-7, 2007

Outline of Talk

- 1. The MLT: a wave-driven circulation
- 2. Tides, planetary waves & gravity waves observed from space
- 3. Vertically extended GCMs:
 - → General description
 - → Comparisons to observations
 - → Interpretation of observations
- 4. Role for data assimilation

1. The MLT: a wave-driven circulation

Extra-tropics

 \rightarrow But the observations show the opposite.

→ Why? Because of the dynamical heating (cooling) that results from gravity wave drag in the mesosphere.

→ In the absence of dynamics, radiation would result in a warm summer mesosphere and a cold winter mesosphere.

Burrage et al. (1996)

2. Tides, Planetary Waves & Gravity Waves Observed from Space

Satellite Sampling Issues

 \Rightarrow Many days are required to sample all local times at a fixed latitude - this will cause aliasing when satellite data are binned in local time.

Migrating (sun-synchronous) Diurnal Tide

Migrating Semi-diurnal Tide

Figure courtesy of Shengpan Zhang

Non-migrating Diurnal Tides

Forbes et al (2003)

Two-Day Wave

Limpasuvan et al (2005)

0.0001

0.001

0.01

- 0.1

0.0001

0.001

- 0.01

- 0.1

PRESSURE (hPa)

PRESSURE (hPa)

Small-Scale Gravity Waves

Single day of temperature data

McLandress et al (2000)

3. Vertically Extended GCMs

General Description

- Upper boundary above ~ 150 km
- Full suite of tropospheric parameterizations (otherwise doesn't count as an extended GCM)
- Parameterizations relevant to the MLT (EUV solar radiation, non-LTE infrared radiation, GWD, etc.)
- Interactive chemistry possibly
- Current extended GCMs:
 - Canadian Middle Atmosphere Model (CMAM)
 - Whole Atmosphere Community Climate Model (WACCM)
 - Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA)
- Remainder of talk focuses on CMAM

Comparisons to Observations

Zonal mean zonal winds

17

Migrating diurnal tide

McLandress (2002)

Non-migrating diurnal tides

Top figure courtesy of William Ward Bottom figure courtesy of Jens Oberheide

Interpretation of Observations

Causes of the semi-annual variation of the migrating diurnal tide

⇒ semi-annual amplitude variation results from a combination of tropospheric heating and mean winds in the mesosphere.

McLandress (2002)

Importance of GWD in generating regions of wave instability

McLandress et al (2006)

Deriving winds from temperatures

CMAM - actual winds

CMAM - gradient winds (derived)

CIRA - gradient winds (derived)

⇒Temperatures should not be used to estimate winds in the tropics, especially when diurnal tide is strong.

McLandress et al (2006)

Equatorial waves

⇒ Equatorial wave spectra are largely controlled by the convective parameterizations.

⇒ This has important consequences for the forcing of equatorial zonal wind oscillations.

Horinouchi et al (2003)

4. Role for Data Assimilation

- The extension of DA systems into the MLT region is a new frontier.
- There are many satellite data sets of the MLT available spanning over two decades.
- DA will be able to merge these data sets in a consistent manner and provide the most reliable climatologies of the MLT region.
- Current climatologies often derived from daytime only data.

Zonal mean climatologies derived from only daytime data Climatology

In the MLT region the climatology is derived using only daytime data.

⇒ Incomplete removal of the diurnal tide could be a problem

Swinbank and Ortland (2003)

Assessing impact of using daytime-only winds using CMAM

Data assimilation would clearly get around this problem.

McLandress et al (2006)

The End

Extra slides

HRDI Observations

Interannual variation of tidal amplitude (strong in 1992 & 93 weak in 1994 & 95) - is it related to the stratospheric zonal wind QBO?

Lieberman (JATP 1997, top) Burrage et al. (JGR 1996, bottogn)

Four-Day Wave

Interannual variations of the migrating diurnal tide

Jul Oct

Jan Apr

1994

Jul

Oct Jan

1995

Burrage (GRL 1995) - HRDI data

McLandress (GRL 2002)

33

34 *

Equatorial wave-forcing in CMAM

Gradient wind balance

Migrating diurnal tide is responsible for gradient wind imbalance at low latitudes

 \Rightarrow strongest at equinox

 \Rightarrow reason for anomalous gradient wind westerlies in equinox.

$$f\bar{u} + \bar{u}^{2} \frac{\tan \phi}{a} + \frac{1}{a} \frac{\partial \Phi}{\partial \phi} = \bar{R} + \bar{F}_{v}$$
$$\bar{R} = -\overline{u'u'} \frac{\tan \phi}{a} - \frac{1}{a \cos \phi} \frac{\partial}{\partial \phi} \left(\overline{v'v'} \cos \phi\right) - \frac{1}{\rho_{o}} \frac{\partial}{\partial z} \left(\rho_{o} \overline{v'w'}\right)$$
McLandress et al (2006)^a

Wave sources

- Solar heating \Rightarrow migrating tides.
- Convection ⇒ migrating and non-migrating tides, equatorial waves (e.g., Kelvin waves), gravity waves.
- Topography ⇒ quasi-stationary Rossby waves & gravity waves.
- In-situ instability ⇒ normal-modes (e.g., twoday wave).