

The impact of ground based ozone monitoring on stratospheric ozone assessments:

A case study using sequential and variational data assimilation

Frank Baier, Thilo Erbertseder, Hendrik Elbern, Jörg Schwinger and Michael Bittner frank.baier@dlr.de

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Motivation

- → Satellite instruments: lack of limb/occultation sounder >2010 ?
- → LIDAR: few instruments, expensive in sustained operation
- Ozone sondes: mature, relatively cheap, many stations (500-700\$ total costs per sounding)
- → Umkehr retrieval: high potential but only low vertical resolution

(see, e.g., WMO/IGACO ozone and UV recommendations)

Bulk of ozone below 10 hPa!

--> assess current ozone sonde networks (this study)

ERS-2 GOME total ozone column heritage

- \rightarrow Nadir looking UV instrument giving 320 x 40km² footprints
- → Global coverage / 3 days since January 1996, reduced since July 2003
- → Retrieval version 4 data within 5% c.t. NDSC (e.g., Spurr et al., 2005)
- → Application projects: ESA CHEOPS, GSE PROMOTE

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

CHEOPS vertical ozone profile record

- Vertical O3 profiles using neural network approach (NNORSY) (Müller et al., 2003)
- → Approximately 10 years of data available since 1996
- → Sequential assimilation as consistency check / fill gaps
- \rightarrow Analyzed profiles show very low bias with most rms <10%

PROMOTE long-term 3D stratospheric ozone record a joined service by BIRA and DLR

Best affordable description of chemical state by combination of satellite data, meteorological data and chemistry-transport models
Long-term synoptic 3D ozone analyses to identify trends in reactive trace gases and inorganic reservoir species

Target products:

- → O3 and related (destructive) species (CIOx, NOx, BrOx)
- → Polar-stratospheric clouds (PSCs)
- → Reservoir species: eg., Cly,Bry
- \rightarrow Quantification of chemical ozone loss

Temporal coverage:1992-2004 (phase 1) , 2005 – to date

Core user:

SPARC CCMval, WMO (negociations)

GOME/NNORSY V3 ozone profiles

Neural Network Ozone Retrieval System (Müller et al., 2003)

- → feed forward 3-layer neural network
- → spectral, temperature (GEOS4) and climate data as input
- \rightarrow trained by additional spectral and profile measurements

Training data	GAW and NDACC ozone sondes
	HALOE, SAGE II, POAM III and SBUV

- **Data volume** ca. 30,000 profiles per day
- **Spatial resolution** 320km x 40km, 3-5km between 15-32km alt.
- Profile errors

bias <<5%, rms <10% for stratosphere independent study (Meijer et al. 2006): 5-10%

Caveats

tropopause region, high zenith angles

CHEOPS analyzed ozone record 1996-2003: GOME/NNORSY/ROSE sub-opt KF approach

CHEOPS analyzed ozone record 1996-2003: GOME/NNORSY/ROSE sub-opt KF approach

Observation Simulation System Experiments (OSSEs)

Simulated ozone soundings using CHEOPS data

Ozone radio sondes

several networks, currently ca. 2 soundings per day

10hPa max altitude

ca. 30min per ascend, >100km drift possible

-> instantaneous 'measurement' on 2.5° model grid

WMO and NASA registered stations (#15, 73, 125 total)

location derived from WOUDC data center: http://www.msc-smc.ec.gc.ca/woudc

Observation Simulation System Experiments (OSSEs)

Two experiment sets

'short-term'

1997 April 01-18th:Iow-ozone streamer from north of Europe1998 Febr. 01-18th:North Atlantic low-ozone streamer2002 Sept. 11-28th:Antarctic vortex-split episode

'long-term'

2001 January-September (Q1-Q3): cold persistent both hemispheres

Three *pseudo* networks (CHEOPS ozone record as input)

- **GAW(A)** 15 active stations, mostly North America and Europe
- **NDACC** 73 stations, global, Greenland, Scandinavia, Antarctica
- **WOUDC** 125 stations, global, all registered including SHADOZ

Ozone sonde station networks

slide 11 Baier et al., Impact of ozone sondes

Observation Simulation System Experiments (OSSEs)

Two experiment sets

'short-term'

1997 April 01-18th:	network WOUDC	1/day	>30°N
1998 Febr. 01-18th:	WOUDC	1/day	<30°NS
2002 Sept. 11-28th:	WOUDC	1/day	>30°S

'long-term'

2001 01-09:	network GAW	1/day
	NDACC	1/week
	WOUDC	1/week
	Reference	no sounding

CHEOPS/ROSE ozone sonde profile OSSE

Resolution = 2.5°x 3.7°, 1.3km, 43 levels (1000-0.3hPa)

Meteorological analyses: UKMO 24h wind and temp. fields

Finite-volume transport scheme (Lin and Rood, 1996) Non-QSSA chemistry (JPL14), NAT, ICE, sulphate aerosols

Sequential assimilation of vmr/rms from CHEOPS analyses (instantaneous 'observations' from surface up to 10 hPa at 7am LT)

KF: propagation of analysis errors (e.g., Khattatov et al., 2002)

'long-term' experiments: 2001 Q1-Q3

slide 14 Baier et al., Impact of ozone sondes

OE CHEOPS 03 error/% 03 2001

ΕQ

3ÓN

OE CHEOPS 03 error/% Q1 2001

OE CHEOPS 03/ppmv Q1 2001

305

зós

rms

vmr

3.2

3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4

Q1

AN2001 AN2001 AN2001 AN2001 AN2001

82001 EP2001 EP2001 EP2001 EP2001 EP2001 EP2001

4N2001 4N2001 4N2001

4N20D1 4N20D1

905

in der Helmholtz-Gemeinschaft

CHEOPS 56hPa ozone

	Refere	nce Q1			Refere	nce Q2		
	#	mean	bias	rms	#	mean	bias	rms
SH	27064	3.46	-5.43	23.83	28333	3.67	5.07	16.89
TP	16942	3.73	-8.04	26.20	24471	3.82	-3.62	21.56
NH	25279	3.71	-4.24	17.17	7527	3.54	-1.04	12.87

	Reference Q3					
	#	mean	bias	rms		
SH	14733	3.82	7.88	19.77		
TP	8961	3.96	-0.74	20.43		
NH	18186	3.25	-1.07	15.26		

	GAW	Q1			GAW	Q2		
	#	mean	bias	rms	#	mean	bias	rms
SH	27064	3.46	-5.45	23.15	28333	3.65	4.40	16.22
TP	16942	3.73	-7.97	25.36	24471	3.81	-3.75	21.12
NH	25279	3.71	-4.18	15.36	7527	3.51	-2.10	11.21

GAW Q3

	#	mean	bias	rms
SH	14733	3.77	6.66	17.82
TP	8961	3.92	-1.25	19.85
NH	18186	3.23	-1.79	14.64

	NDAC	CC Q1			NDAC	CC Q2		
	#	mean	bias	rms	#	mean	bias	rms
SH	31801	3.43	-3.28	19.14	28333	3.60	3.12	15.03
TP	17014	3.82	-5.34	21.03	24471	3.87	-2.05	18.14
NH	29948	3.72	-3.57	14.40	7527	3.48	-2.83	11.07

NDACC Q3

	#	mean	bias	rms
SH	12468	3.82	5.53	15.49
TP	1314	3.80	2.75	17.45
NH	6986	3.01	-1.48	11.04

	WOUI	DC Q1			WOUI	DC Q2		
	#	mean	bias	rms	#	mean	bias	rms
SH	31801	3.45	-2.93	18.13	28333	3.60	3.12	14.89
TP	17014	3.84	-4.72	19.70	24471	3.89	-1.75	16.90
NH	29948	3.71	-3.69	14.33	7527	3.50	-2.30	10.92

WOUDC Q3

	#	mean	bias	rms
SH	12468	3.83	5.61	15.49
TP	1314	3.84	3.69	16.90
NH	6986	3.00	-1.99	11.18

PDF analysis Q2: Reference/WOUCD - HALOE

Analysis error GAW/NDACC Q1, Q2 60°N

Analysis error NDACC/WOUDC Q1, Q2 Eq

Analysis error NDACC/WOUDCQ1, Q260°S

FMO errors GAW/NDACC

GOME data gap

Slide 24 Baier et al., Impact of ozone sondes

FMO errors NDACC/WOUDCQ1, Q2Eq

FMO errors NDACC/WOUDCQ1, Q260°S

Slide 26 Baier et al., Impact of ozone sondes

'short-term' experiments: 1997 APR 01-18, 1998 FEB 01-18, 2002 SEP 11-28

CHEOPS ozone record 1997 April 9-12th

Gr4DS: COLA/IGES

WOUDC/Reference 1997 April 12th

ozone bias >60°N

'short-term' aggregated results: three test areas

Resolution = 250km (icosaeder), 43 sigma levels (top at 65 km)

ECMWF analysis as init for GME multi-day forecasts

Semi-Lagrange transport scheme Non-QSSA chemistry, NAT, ICE PSCs (not this study) and aerosols

4Dvar: incremental with isotropic background covariances (Courtier, 1997)

Instantaneous 'observations' using CHEOPS data at 7 LT up to 10 hPa

Resolution = 250km (icosaeder), 43 sigma levels (top at 65 km)

ECMWF analysis as init for GME multi-day forecasts

Semi-Lagrange transport scheme Non-QSSA chemistry, NAT, ICE PSCs (not this study) and aerosols

4Dvar: incremental with isotropic background covariances (Courtier, 1997)

This study: assess impact of observations via gradient of cost function

slide 33 Baier et al., Impact of ozone sondes

GOME-2 / MetOp - 4DVar Analysis O₃ad at 55.4 hPa h 120 Apr 08, 1997 Northern Hemisphere

GOME-2 / MetOp - 4DVar Analysis O₃ad at 55.4 hPa h 120 Feb 08, 1998

slide 35 Baier et al., Impact of ozone sondes

in der Helmholtz-Gemeinschaft

Summary

- → OSSE experiments using CHEOPS ozone profile analyses
- → Test of different ozone sonde networks and sounding frequencies
- ✓ Multi-day adjoint analysis of sounding sensitivity

Long-term experiment 2001

- ✓ Up to 25% rms error reduction c.t. HALOE for tropics and SH
- → Increase of soundings per stations does not compensate for lack of cover.
- → Model results without observations already at 15% level for NH
- → Tropics: results obstructed by poor model performance noisy wind fields

Short-term experiments '97 '98 '02

- → NH: model bias reduced: improved streamer forecast
- → Tropics: weak dispersion of observations, resulting in poor coverage
- → SH: current network layout not adequate during dynamic events (v-split)

Recommendations

- → Increase number of regular soundings at base stations
- → Better distributed soundings in tropics to improve coverage
- → Use Umkehr/satellites etc. to reduce model bias
- ✓ Coordinated measurements to better capture dynamic events

Many thanks to: NCAR (National Center for Atmospheric Research) WMO/IGACO (Integrated Global Atmospheric Chemistry Observations) GAW/ (Global Atmospheric Watch) NDACC (Network for the. Detection of. Atmospheric Change) WOUDC (World Data Center for Ozone and UV)

First-guess minus observation (FMO) errors: Improvements of GOME/NNORSY from v2.3 to 3.0

HALOE 2003/2004 comparison results

ROSE-UKMO c.t. HALOE (100-2 hPa)							
obs		mean	bias/%	rms/%			
03	48776	5.10	0.29	13.71			
H2O	48778	5.05	4.29	9.30			
Nox	41478	7.79	0.97	26.30			
CH4	48576	4.26	7.77	15.19			
HC1	41484	1.82	-9.02	19.61			

SACADA c.t. HALOE (100–2 hPa)							
obs		mean	bias/%	rms/%			
03	65582	4.99	-0.43	13.09			
H2O	65584	5.11	4.47	10.00			
Nox	55761	6.85	-11.75	24.25			
CH4	65452	4.05	6.49	12.45			
HC1	55768	1.27	-59.36	75.64			

ROSE-GME c.t. HALOE (100-2 hPa)								
obs		mean	bias/%	rms/%				
O3	54252	5.16	1.64	8.81				
H2O	54254	5.09	5.01	9.14				
Nox	46137	7.99	2.73	24.86				
CH4	54050	4.21	7.49	13.56				
HC1	46142	1.92	-4.28	15.23				

in der Helmholtz-Gemeinschaft