

Using Data Assimilation to Improve Climate Models - Troposphere

Mark Rodwell and Tim Palmer

24 July 2009

Rodwell and Palmer, 2007: Q. J. R. Meteorol. Soc., 133, 129-146

Parameter Uncertainties in Climate Sensitivity

Parameter	Physics	Low	Middle	High
Droplet to rain conversion rate (s ⁻¹)	Cloud	0.5x10 ⁻⁴	1.0x10 ⁻⁴	4.0x10 ⁻⁴
Relative humidity for cloud formation	Cloud	0.6	0.7	0.9
Cloud fraction at saturation (free trop.)	Cloud	0.5	0.7	0.8
Entrainment rate coefficient	Convection	0.6	3.0	9.0
Time-scale for destruction of CAPE (h)	Convection	1.0	2.0	4.0
Effective radius of ice particles (µm)	Radiation	25	30	40
Diffusion e-folding time (h)	Dynamics	6	12	24
Roughness length parameter (Charnock)	Boundary	0.012	0.016	0.02
Stomatal conductance dependent on CO ₂	Land	Off	-	On
Ocean-to-ice heat transfer (m ⁻² s ⁻¹)	Sea Ice	2.5x10⁻⁵	1.0x10 ⁻⁴	3.8x10 ⁻⁴

MANY UNCERTAINTIES ARE ASSOCIATED WITH "FAST PHYSICS". ... WHICH IS ALSO IMPORTANT IN NWP

Representative selection of parameters and uncertainties used by Murphy et al., 2004: Nature, 430, 768-772.

Climate: Error vs Sensitivity to CO₂ doubling

Combined RMSE of 8 year mean, annual mean T_{2m} , SLP, precipitation and ocean-atmosphere sensible+latent heat fluxes (equally weighted and normalised by the control). Stainforth et al., 2005, Nature, **433**, 403-406.

T500 Forecast Error as function of lead-time

Based on DJF 2007/8 operational analyses and forecasts. Significant values (5% level) in deep colours.

Data Assimilation Cycle: Perfect Model

5

Data Assimilation Cycle: Imperfect Model

-Mean Analysis Increment = Mean Net Initial Tendency ("I.T." in, e.g., Kcycle⁻¹)

= Mean: Convective I.T. + Radiative I.T. + ... + Dynamical I.T. (summed over all processes in the model)

Confronting Models with Observations

- Every 1° square has data every cycle
 - ~6 Million data values
- Independent vertical modes of information:
 - IASI / AIRS: ~ 15
 - HIRS / AMSUA: ~ 5 (~ 2 IN TROP)
- Anchors (not bias corrected):
 - Radiosonde
 - AMSUA-14
 - Radio Occultation

Based on DJF 2007/8 operational analyses and forecasts. Significant values (5% level) in deep colours. AIRS CH 215 BRIGHTNESS TEMPERATURE ~T500

Mean Precipitation Error at Day+5 (Jan 2005)

Focus on Amazon/Brazil region (300°E-320°E, 20°S-0°N) as it should not favor the CONTROL model The Amazonian precipitation deficit exists at medium and seasonal ranges

Modelled precipitation is accumulated over 31x4 integrations with start times 2004/12/27 0Z to 2005/01/26 18Z. It actually represents precipitation between D+5 and D+5 ¼. Analysis (4D VAR, 6h window) is consistent with forecast model (CY29R1 T159 L60 TS=1800s).

Amazon January 2005 Initial T Tendencies

Reduced Entrainment model is out of balance: reject or down-weight?

Amazon = [300°E-320°E, 20°S-0°N]. Mean of 31 days X 4 forecasts per day X 12 timesteps per forecast. 70% confidence intervals are based on daily means. CONTROL model = 29R1,T159,L60,1800S.

Vertically Integrated Absolute Tendencies

Mean of 31 days X 4 forecasts per day X 12 timesteps per forecast. Mass-weighted vertical integrals. CONTROL model = 29R1,T159,L60,1800S.

How to Weight Models in Perturbed Ensemble

Calculate the probability that a given model is "perfect"

p = p(param,x,y,z)

 probability that a zero population-mean tendency cannot be rejected

Possible methodology:

Average p over parameters (T,q,u,v) Vertically integrate

Integrate over tropics and extra-tropics

 $p_{PERF} \equiv p_{TROP} \ge p_{EX-TR}$

Cost of Assessing Models with Multiple Pertⁿs

31 day Initial Tendencies ≡ 5 years CGCM

Assessment of Coupled Climate

 $C'_{\rho_1,\rho_2,\ldots,\rho_n} = C'_{\rho_1} + C'_{\rho_2} + \ldots + C'_{\rho_n} ?$

Murphy et al. (2004): 23 "fast physics" parameters over 5 processes, 2 to 4 values Linear: 24 models to assess Non-linear: 15,000,000,000 models to assess

Assessment of Initial Tendencies

$$\frac{\partial M_{p_1,p_2,\dots,p_n}}{\partial t} = \frac{\partial M_{p_1}}{\partial t} + \frac{\partial M_{p_2}}{\partial t} + \dots + \frac{\partial M_{p_n}}{\partial t}$$
?

Non-linear tendency term not significantly different from zero in troposphere

Initial Tendencies may be "linear enough"

Linearity between processes: 1275 models to assess

Analysis Increments and Initial Tendencies

Assesses model 'fast physics' (NWP physics)

• Unlike forecast skill which is complicated by unknown inherent predictability

Assesses model processes when they are acting on atmospheric states close to reality

- Single column models: Atmospheric state inconsistent with model physics
- AGCM climate simulations: Atmospheric state has drifted towards model manifold

Can be applied to Climate Models

- Majority of climate model perturbations are associated with fast physics
- Weight each model by the probability that it is 'perfect' (?)
- More powerful than assessing annual-mean climates
- Big computational cost savings: Can be devoted to 'slow physics'
- Part of a more seamless approach

Implications of Variational Bias Correction

- May attribute some large-scale model bias to observations. However ...
- There are anchor points: Radiosonde, AMSUA-14, Radio Occultation
- Any bias left is more likely to be due to model error
- VARBC is good for a fair comparison of models

T and (v,ω) Analysis Increments MAM09 M.J. Rodwell

14

Based on MAM 2009 0 & 12 UTC operational analyses. Significant values (5% level) in deep colours.

T and (u,v) An. Incs. at 10hPa MAM09

Based on MAM 2009 0 & 12 UTC operational analyses. Significant values (5% level) in deep colours.

AMSUA Channel 12 (~T10) Obs-F.G. MAM09

Based on MAM 2009 0 & 12 UTC operational analyses.