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1. Estimation of the missing forcing.

• Twin experiments

• Realistic experiments

2. Parameter estimation.

• Variational data assimilation

• Genetic algorithm

1



Source of errors in climate models: subgrid effects

GCMs do not resolve all the motion scales, because of this, th ey are not

able to capture the systematic momentum forcing that is prod uced by

small-scale waves.

There is no simple way to infer this systematic momentum defic it (missing

drag) in a GCM.

If one computes the difference between the true state and the model state,

the result is a combination of different source of errors, re cent and past,

which once they are generated are advected and interact with other parts of

the system.

Is there an objetive one to find the source of the momentum defic it, i.e., the

exact time and position where the momentum error was produce d?

Then if we force the momentum equation with this 4D vector fiel d (RHS

forcing term), the model will evolve exactly as the true stat e.
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Using data assimilation to diagnose ’missing drag’

4DVar can be used to estimate unknown parameters of a model.

There is no background information (perfect ignorance), so the cost

function is defined as

J =
1

2

n
∑

i=1

(H[yi] − xi)
TR−1(H[yi] − xi)

where xi is the model state, yi are the observations. The state is

given by the model evolution from t0 to ti

xi = M(x0,X, ti)

The model state is a function of the initial condition and als o of the

’missing drag’. Then J = J(x0,X)

Therefore, if we know x0 the control space of the cost function is only

the field X. The minimum of the cost function gives the ’missing drag’

(Pulido and Thuburn, 2005).
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Middle atmosphere dynamical model, M(x0,X, ti)

The dynamical model is based on the fully nonlinear, hydrostatic primitive

equations, with an isentropic vertical coordinate and a hexagonal-icosahedral

horizontal grid (Thuburn 1994).

∂tσ + ∇ · (σu) + ∂θ(σθ̇) = 0

∂t(σQ) + ∇ · (σQu − k̂ × θ̇∂θu) = Xζ

∂tδ +∇· [σQk̂×u+∇(Ψ+
u2

2
)+ θ̇∂θu] = Xδ

Horizontal

icosahedral grid.

The bottom boundary condition is set at p ≈ 100mb, where a time dependent

observational Montgomery potential is imposed.

A realistic parametrisation of radiative transfer is used (Shine 1987; Shine and

Rickaby 1989).
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The Adjoint Model

The gradient of the cost function is calculated with the adjoint model.

The missing forcing is assumed constant within an assimilation window length.

1. Develop the tangent linear of the dynamical model:
[

δxn+1

δXn+1

]

=

[

M ′(xn) I

0 I

] [

δxn

δXn

]

2. Develop the adjoint from the tangent linear model
[

δx̂n−1

δX̂n−1

]

=

[

M ′T (xn) 0

I I

] [

δx̂n

δX̂n

]

3. Finally, the gradient of the cost function is given by
[

∂J
∂x0

∂J
∂X0

]

=
N−1
∑

n=0

[

M ′T (xn) 0

I I

]

· · ·

[

M ′T (xN−1) 0

I I

] [

∂J
∂xN

∂J
∂XN

]
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Twin experiments

Experiment:

• Gaussian forcing used

as the prescribed drag for

the twin experiments.

• The adiabatic evolution

is started from resting con-

dition with an isothermal

atmosphere.

• The model evolution
with the prescribed drag is
taken as the observation.
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Flow response. ’The observations’
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Flow response to the ap-

plied drag at t =1 day.

This could be interpreted

as a crude budget calcula-

tion:

X = [u(1d)−u(0)]/1d
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Estimated drag
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Estimated drag after 25

minimisation iterations.

Observations are:
σ∗(1d), Q∗(1d) and
δ∗(1d). So that

J =
X

(δ − δ
∗)2 + σ

2(Q − Q
∗)2

+(τσ)−2(σ − σ
∗)2

The error in the drag estimation is

smaller than 1 m/s/day (Pulido and

Thuburn 2005).
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Convergence

Error as a function of minimisation iteration.

25 minimisation iterations are enough to find a good drag estimate.

The rotational component of drag is better estimated than divergence

component.
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Limited observational information
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scribed drag at midlatitudes

(left panel) and at the equa-

tor (right panel).

Shading contours are the

estimations and contours

are the errors.
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Real estimations: Met Office analysis

Observations: Met Office middle atmosphere analyses.

Initial condition: for the first assimilation window of each month is taken from MO

analyses, for subsequent windows we use our analyses.

Cost function: potential vorticity and pseudo-density (function of temperature only) are

used as observed variables which are taken from MO analyses.

Control space: Curl of drag only.
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Estimated zonal mean monthly averaged zonal drag
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Bottom momentum flux: Sources?
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∫ θt

θb

σXxdθ.
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Pulido and Thuburn

(2008).
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A further step: Parameter estimation

Can GW schemes with optimum parameters reproduce the estimated missing drag?

Scinocca (2002) scheme assumes a launch EP momentum flux spectrum is given by

E(c, zl) =
4E∗

πc2
∗

c

[

1 +

(

c

c∗

)4
]

−1

c∗ ≡
Nlλ∗

2π
is the characteristic phase speed and E∗ the total momentum flux.

The dissipation of the waves is activated when a component of the spectrum exceeds a

saturation threshold given by

Es(c, z) =
S∗E∗

c2
∗

ρ(z)Nl

ρlN(z)

[c − u(z)]2

c

The momentum flux that is eliminated and the drag are given by

ET (z) = E∗ −

∫ cc

0

[E(c, zl) − Es(c, z)] dc X = ρ−1∂zET .
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Optimum parameters: Variational data assimilation

The cost function is defined as: J = (x − y)T R−1 (x − y) where y is the observed

GWD profile and x = X(E∗, λ∗, S∗) is the forcing resulting from the GW scheme.

Variational data assimilation similar to Drag estimation, the minimization is performed by

a conjugate gradient method.
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Optimum parameters: Genetic algorithm

A genetic algorithm developed in NCAR by Charbonneau and Knapp (1995) is used to

minimize the cost function.

• The minimization is perfomed in a constrained domain.

• We set the number of individuals in a population to 100 and the number of

generations to 200.
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Cost function geometry. R matrix?
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 R−1 = ρT ρ i.e. the observed variable is EP flux divergence, y = ρX .
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Estimated parameters

Zonal wind and temperature is taken from Met Office analysis.

The GWD field estimated with the ASDE-4DVar technique (Pulid o and Thuburn,

JC 2008) for July 2002 is used as observational forcing profil e y.

Parameters E∗ (left) λ∗ (middle) and S∗ (right) estimated for Met Office analysis

in July 2002

17



Case y = X : Estimated GWD and EP div

Obs X
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Case y = ρX : Estimated GWD and EP div

Obs X
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Conclusions

Estimating the source of missing momentum:

• Variational data assimilation may be used to estimate the mi ssing force

for a given climate model.

• The 4DVar technique appears to give robust results with very good

convergence.

• It is able to estimate the ’launch’ momentum flux

Estimating parameters of GW schemes:

• Variational data assimilation may be not useful for estimat ing parameters

of physical parameterizations, since the sensitivity is us ually nonlinear.

• A genetic algorithm works well for this low dimension proble m.

• The technique is able to reproduce the ’observed missing for cing’.

• A physical interpretation of the estimations is not direct.
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