
References

Burgers, G., P. J. Van Leeuwen, and G. Evensen, 1998: Analysis Scheme in the Ensemble Kalman
Filter. Monthly Weather Review, 126, 1719–1724.

Evensen, G., 2003: The Ensemble Kalman Filter: theoreticalformulation and practical imple-
mentation.Ocean Dynamics, 53, 343–367.

Gaspari, G. and S. Cohn, 1999: Construction of correlation functions in two and three dimensions.
Quaterly Journal of the Royal Meteorological Society, 125, 723–757.

Houtekamer, P. L. and H. L. Mitchell, 2001: A Sequential Ensemble Kalman Filter for Atmo-
spheric Data Assimilation.Monthly Weather Review, 129, 123–137.

Taylor, C. P. and M. S. Bourqui, 2005: A new fast stratospheric ozone chemistry scheme in an
intermediate general-circulation model. i: Description and evaluation.The Quarterly Journal
of the Royal Meteorological Society, 131, 2225–2242.

Conclusions

Examples of twin experiment assimilations of synthetic observations in climatological-ensemble
Kalman filters have highlighted possibilities and failuresof the system. A larger window of
experiment is necessary to draw more accurate conclusions but a few observations can be stated.

Satisfactory stability tests of the HM EnKF with a latitudinally-dense observation network (MI-
PAS), will allow to test ozone assimilation and its effects on dynamical properties of the analysis
ensemble.

Unexplained divergence of the spread in SVD assimilation will be investigated by removing
chemical tracers from the state vector, increasing the sizeof the ensemble or doing local analysis,
to see if dynamical balance can be retained.

Future improvements to the HM data assimilation filter will include implementing space and
variable-dependent covariance localization and possiblycovariance inflation.

Results

Climatological ensemble (Fig.2, dashed and solid red lines)
The evolution of the climatological ensemble give us groundfor comparison with assimilation
products (blue lines). Here, the most ”central” member is initially chosen as truth, but it will
eventually diverge away from ensemble mean : the error growsand surpasses the climatological
spread after day 70.

MIPAS HM assimilation (Fig.2, upper panel)
The spread of the ensemble sharply decreases in the first few assimilation cycles to settle to
a constant value. The error wiggles about the spread, but does not diverge, indicating good
filter stability. Notably at the end of the sequence, the climatological natural tendency towards
divergence is corrected by the assimilation.

ACE-FTS HM assimilation (Fig.2, lower left panel)
The spread displays two regimes for such data assimilation.The first, distinguishable at the
beginning and end of the sequence, shows little correction from the forecast stage to the analysis
(thin envelope), while the second regime has a smaller spread and larger envelope. The two
regimes are linked to the occultation latitudes, the first regime happens when observations are
taken near the equator (e.g. Fig.1, right panel), the secondwhen the observations are taken near
both poles. Thus, considering the latitudinal restraint and sparseness of the observations, the
analysis can not correct the error in the end of the sequence and we observe divergence between
the error and the spread.

MIPAS SVD assimilation (Fig.2, lower right panel)
The error shows improvement in comparison with the climatological error, however the spread
displays unexpected behavior. Opposite to typical assimilation cycles, the analysis stage actually
increases the spread, while the forecast tries to bring the spread back towards climatology. The
net result is a constant increase in the spread until model failure. The limited number of singular
vectors (128) onto which the state vector (of much higher dimension) can project is the most
likely candidate for such behavior.
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Figure 2: Global mid-stratospheric forecast and analysis temperature error and spread for clima-
tological ensemble and three different assimilation scenarios.

RMS difference between ensemble mean and true state :
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Mean RMS difference between ensemble members and the ensemble mean :
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Diagnostics

Diagnostics for state ensemble matrixA(N,M ) =
(

ψ1, ψ2, ..., ψM
)

,
N representing the model state space and M the ensemble members :

Diagnostics are performed for a given variable and a spatialsubset of the model state space
spanning the whole globe but restricted to the mid-stratosphere (between pressure levels 30 to 90
hPa).

SYNTHETIC MIPAS T RETRIEVALS SYNTHETIC ACE-FTS T RETRIEVALS

Figure 1: Example of horizontal location for the two types of temperature observations used.

Data Assimilation Experiment

Model forecasts :
Climatological ensemble from a T21L26 (lid at 0.1hPa) time-slice run of 129 years onσ levels.
State vector:

ψ =
(

u, v, T, q, Ox, N2O5, NOx, HNO3, Ps

)T

Twin experiment :
128 members + 1 true state chosen so as to minimize RMS error over the stratosphere.
24-hour assimilation window, forecast and analyses at 00 UTC.

HM assimilation :
EnKF with Schur-product localization of forecast error-covariance matrix using a compactly-
supported 5th-order piecewise rational function (Gaspari and Cohn, 1999) with 1400-km hori-
zontal decorrelation length and 1 unit in ln(P) scale for vertical decorrelation length.
Data assimilated sequentially in 100-observation batches.

SVD assimilation :
EnKF with SVD decompostion of sum of the observation perturbations and mapped-to-observation-
space forecast departures from ensemble average.
Number of singular vectors defined by the smallest of the number of ensemble members or the
number of observations.

Synthetic observations:
Random perturbations (Burgers et al., 1998) from true temperature interpolated on pressure levels.
Perturbations are normally-distributed, unbiased, with astandard deviation equal to 10% of the
true temperature.
Two types of observations (Fig.1), MIPAS and ACE-FTS, both span a vertical region ranging
from 10 to 300 hPa. MIPAS orbits moves longitudinally with time, with a recurrence interval of
36 days. Each ACE-FTS occultation latitude cycle has a period of 60 days.

Abstract

Data assimilation is an essential component of the numerical prediction of the atmosphere, but
its use in the stratosphere is still at an early stage. This layer of the atmosphere poses a lot of
scientific challenges, including its strong nonlinearity in wave-breaking regions and the coupling
between ozone chemistry, radiation and dynamics. The Ensemble Kalman Filter (EnKF) is cho-
sen here since it is ensemble-based and thus, unlike variational data assimilation schemes, it does
not require the tangent linear model and its adjoint to propagate covariances and therefore retains
the nonlinear properties of the model used. The EnKF is here coupled with a chemistry-climate
model with a fast interactive ozone chemistry scheme, the IGCM-FASTOC (Taylor and Bourqui,
2005).
This study presents first results towards exploring the application of the EnKF to stratospheric
chemical-dynamical data assimilation. Initial stabilitytests have been performed for two analysis
schemes of the EnKF, one with explicit formulation of the error-covariance matrices and observa-
tions localization (Houtekamer and Mitchell, 2001, henceforth HM), the other with singular-value
decomposition (SVD) of the error fields (Evensen, 2003). Assimilation is performed with syn-
thetic satellite observations, mimicking MIPAS (nadir) and ACE-FTS (solar-occultation) tem-
perature retrievals. Assimilation test scores for these different types of observations are here
presented.
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