Analysis and Medium range forecasting of MA constituents using a coupled chemistry-dynamics DAS

> MOCA – Montréal July 24th, 2009

Jean de Grandpré, Chris McLinden, Richard Ménard, Simon Chabrillat, Yves Rochon, Cécilien Charette, Alain Robichaud and Yan Yang

> S Atmospheric Science & Technology Directorate, Environment Canada, Canada

S Belgisch Instituut voor Ruimte-Aëronomie, Institut d'Aéronomie de Belgique (BIRA-IASB), Belgium

Environment Environnement Canada Canada

Issue : What is the impact of assimilating ozone measurements on temperature predictability?

Outline

- Ozone predictability
- MSC Data Assimilation System
- Ozone and temperature (analyses & forecasts)
- Conclusions

Prognostic ozone

$$\frac{O_3(t+\Delta t) - O_3(t)}{\Delta t} = -\vec{V} \cdot \vec{\nabla}O_3 + P(Q) - L(Q)O_3$$

Q $[q_1, q_2, ..., q_n]$: vector of *n* species mixing ratios

Environnement

Canada

- O_3 : Ozone mixing ratio
- V : wind vector
- P(Q): photochemical production

Environment Canada

L(Q): photochemical sink

Prognostic ozone

$$\frac{O_3(t+\Delta t) - O_3(t)}{\Delta t} = -\vec{V} \cdot \vec{\nabla}O_3 + P(Q) - L(Q)O_3$$

Q $[q_1, q_2, ..., q_n]$: vector of *n* species mixing ratios

- O_3 : Ozone mixing ratio
- V : wind vector
- P(Q): photochemical production
- L(Q): photochemical sink

→ Maximum ozone predictability occus in the lower stratosphere

• Long radiative timescale ($T_{rad} \sim months$)

Environment Environnement Canada Canada

• $au_{rad} < au_{chem}$

GEM-Strato

Based on the Canadian operational Global Environmental Multiscale model extended to the stratosphere (Côté et al., 1998).

- Semi-Lagrangian dynamical core
- S Lid at 0.1 hPa (80 levels) & (1.5°x1.5°)
- S Correlated-K radiation scheme (Li and Barker, 2005)
 - Ozone climatology
 - Fortuin & Kelder (1998) merged with UARS above 0.5 hPa
 - Prognostic ozone
 - BASCOE CTM (57 species) (Daerden et al., 2007)
 - LINOZ (McLinden et al., 2000)

$$\frac{dq}{dt} = (P-L)\Big|^o + \frac{\partial(P-L)}{\partial q}\Big|_o (q-q^o) + \frac{\partial(P-L)}{\partial T}\Big|_o (T-T^o) + \frac{\partial(P-L)}{\partial c_{o_3}}\Big|_o (c-c^o_{o_3})$$

Environment Environnement Canada Canada

CMC Assimilation System

- 3D-Var FGAT (Gauthier et al., 1999)
- Use conventional meteorological observations (radiosondes, surface observations, aircraft winds, AMSU radiances)
- Chemical observations from MIPAS (T, O₃, CH₄, N₂O, HNO₃, NO₂)
 - Observation and background error statistics:
 - Univariate background error covariances
 - Characterization of the chemistry component done with the Hollingsworth-Lönnberg method
- MIPAS temperatures used as reference for the bias correction of AMSU-a stratospheric channels

Assimilation cycles

3D-var FGAT experiments (Aug 11th – Nov 13th 2003) & 15 days forecast (interactive & non-interactive):

1) GEM-BASCOE 2) GEM-LINOZ

On-line approach:

Conclusions

- The temperature predictability in the middle and lower stratosphere has improved with the use of ozone analyses for the computation of heating rates.
- In the middle stratosphere (~ 10 hPa) the impact of using different photochemistry modules is neutral. The comprehensive scheme better resolve ozone-temperature interactions but develop stronger ozone biases. It requires a better constraint of the ozone budget.
 - In the lower stratosphere (~50 hPa) both approaches have a positive impact on temperature. The ozone predictability in the region mainly depends on the quality of ozone analyses in terms of vertical resolution.
 - In the lowermost stratosphere (below 100 hPa) both approaches have a negative impact on temperature which is associated to the representation of ozone in the upper troposphere region.

.**be** Canadä

Radiative and photochemical timescales au_{rad} (days)

BASCOE CTM

- 57 chemical species, all advected (S-L)
- O_x , HO_x , NO_x , CIO_x , BrO_x and few hydrocarbons
- Source species: N₂O, CH₄, H₂O, CFCs, HCFCs and Halons
- 142 gas-phase reactions; 7 heterogeneous reactions
- 52 photodissociation reactions, *J* interp from tables
- Photochemical rates are taken from JPL-2002
- Solver generated by KPP (Sandu and Sander, ACP, 2006)
- Numerical method: 3rd order Rosenbrock
- 45-min timesteps divided into sub-timesteps
 (can be as short as 1 µs)

