

Intrinsic Middle Atmosphere Predictability

Keith Ngan and Giles Eperon Data Assimilation and Ensembles

This presentation covers the following areas Background Middle atmosphere predictability Unified Model results Discussion

© Crown copyright Met

Background

Many different aspects (and definitions) of predictability.

This talk is concerned with the growth and propagation of small-scale, small-amplitude errors in spectral space.

Approach is embodied in the classical picture of predictability due to Lorenz, Leith & Kraichnan.

Predictability is measured by relative errors (i.e. relative KE) There is an inverse error cascade from small to large scales Key assumption: homogeneous, isotropic turbulence.

The real atmosphere cannot be described exactly by 2-D or quasigeostrophic turbulence.

Conventional view is that the classical picture carries over straightforwardly to the real atmosphere.

Key quantity: eddy turnover time

$$\tau(k;k_1) = \left(\int_{k_1}^k k'^2 E(k')dk'\right)^{-\frac{1}{2}}$$

For $E(k) \sim k^{-p}$ and $k \rightarrow \infty$

© Crown copyright Met Office atmospheric energy spectrum.

Mesoscale energy spectrum remains controversial.

One possible explanation: downscale propagation of wave energy (e.g. Bartello 1995).

Tribbia & Baumhefner(2004)

NWP predictability departs from the classical picture:

- Rapid saturation of small scales; exponential growth of synoptic scales.
- Don't have simple inverse error cascade: predictability regimes (Boer 1994).

Rotating stratified turbulence

subsynoptic $[L_d/L_0 = 10]$

(super)synoptic $[L_d/L_0 = 0.1]$

Predictability decay for subsynoptic flow is significantly slower.

Implication: gravity waves *increase* predictability.

Reference: Ngan, Bartello & Straub, JAS 2009.

Middle atmosphere predictability

Middle atmosphere predictability

Most studies of NWP predictability have been restricted to the troposphere.

One might expect differences in the middle atmosphere, where smallscale gravity waves play an important role.

Nezlin et al. (2008)

Examined predictability of the CMAM DAS.

Key result: large-scale stratospheric information can be assimilated in the mesosphere.

Nezlin et al. (2008)

Examined predictability of the CMAM DAS.

Key result: large-scale stratospheric information can be assimilated in the mesosphere.

Liu et al. (2009)

Met Office

Examed predictability of a whole-atmosphere model (NCAR WACCM: lid at \sim 140 km).

Key result: vertical coupling due to gravity waves

FIG. 7. Vertical profiles of rms 20nal wind error in case L (solid line) and case U (dotted line) (a) 0.5 day, (b) 1 day, (c) 2 days, and (d) 4 days after the simulation starts.

© Crown copyright

Liu et al. (2009)

Met Office

Examed predictability of a whole-atmosphere model (NCAR WACCM: lid at \sim 140 km).

Key result: vertical coupling due to gravity waves

FIG. 7. Vertical profiles of rms 20nal wind error in case L (solid line) and case U (dotted line) (a) 0.5 day, (b) 1 day, (c) 2 days, and (d) 4 days after the simulation starts.

© Crown copyright

Focusing on the intrinsic error:

• What is the role played by gravity waves? For a shallow spectrum, Ro and Fr increase towards small scales.

• What happens in the stratosphere and mesosphere? Expect them to be more predictable.

• Is rapid vertical coupling robust?

NWP model

NWP Model (Met Office Unified Model)

Key features:

- Based on compressible Navier-Stokes
- Comprehensive model physics (e.g. convection, radiation, microphysics)
- Semi-Lagrangian/semi-implicit timestepping

Overview of simulations:

- 432 x325 grid (spacing ~ 50 km)
- 50 levels (lid at ~ 60 km)
- 30-day forecasts

• Initial conditions taken from winter 2006 analysis

Perturbations are constructed by decomposing horizontal velocity field into spherical harmonics and randomising phase.

Two cases

– Small scale: $70 \le n_f \le 216$

- Large scale: $1 \le n_f \le 3$

No initialisation (e.g. horizontal non-divergence or geostrophy) or data assimilation: "intrinsic predictability".

Error spectra:

$$\Delta_{KE}(k) = \sum_{|\mathbf{k}|=k} \frac{(\Delta \boldsymbol{\omega})^2}{k^2}, \quad \Delta \boldsymbol{\omega}(k) = \boldsymbol{\omega}^{(p)} - \boldsymbol{\omega}^{(c)}$$

Relative error:

$$r_{KE}(k) = \frac{\Delta_{KE}(k)}{E_K(k)}$$

Mean relative error:

$$\overline{r_{KE}}(\tau) = \frac{\sum_k \Delta_{KE}(k)}{E_K}$$

Longitude

Troposphere

0.1667	0.3333	0.5	0.6667	0.8333	1	
Relative KE error						

Longitude

Met Office

Longitude

Longitude

0.1667 0.3333 0.5 0.6667 0.8333 1 Relative KE error

Errors are much smaller in the mesosphere.

Slower error growth in tropics.

Longitude

Mesospheric spectra of middle-atmosphere GCMs show evidence of shallowing (Koshyk et al. 1999).

Similar results are obtained with a 1-minute timestep.

Relative error spectra (small-scale pert)

• Structure of evolution is broadly similar from troposphere to mesosphere.

n

Spectral growth rates

strat

mes

Enhanced mesospheric predictability

zonal-mean zonal velocity

Resolved gravity waves

Longitude

Longitude

- Operational NWP model is run with a fairly large timestep. In the mesosphere, Courant number > 1.
- With $\Delta t = 1$ min, advective Courant number < 1, but wave Courant number is large.
- Fast waves are not being resolved properly. Implications for predictability?

Discussion

- Influence of increased resolution (more resolved gravity waves, shallower spectrum)
- Influence of initialisation/ data assimilation.

• Predictability decay is significantly slower for smallscale, strongly stratified flow.

• Predictability decay is slower in the mesosphere than in the troposphere. But difference is modest: numerics (e.g. resolving gravity waves) could be an issue.

Questions and answers

tion of a large-amplitude, large-scale pertur bility loss at large scales.

Relative error spectra (large-scale pert) rKE(n) vs n, lev=17 rKE(n) vs n, lev=38 1 1 0.1 0.1 trop 0.01 0.01 ЯŤ ЯŤ 0.001 0.001 0 0 0.0001 0.0001 24 24 48 48 1e-05 1e-05 96 96 192 192 1e-06 1e-06 384 384 696 696 1e-07 1e-07 10 100 10 100 n n

strat

mes

• Results are essentially identical to those for the small-scale perturbation.

• Spectral filtering is not exact: residual small-scale noise (energy is ~10⁶ smaller).

Classical picture of predictability

Much of our intuition about atmospheric predictability derives from the pioneering work of Lorenz, Leith & Kraichnan.

Using a stochastic model of the barotropic vorticity equation, Lorenz (1969) showed that there is finite atmospheric predictability: infinitesimal small-scale errors contaminate the largest scales within a finite period of time.

Lorenz's analysis was later corrected and extended by Leith & Kraichnan (1972).

This is the so-called atmospheric butterfly effect.

Nature of the dynamics is controlled by Ro and Fr. Expand in Ro: O(1): geostrophy O(Ro), Ro ~Fr, quasi-geostrophy Hierarchy of balanced models.

Want to examine contrast between (super)synoptic (large-scale) and subsynoptic (small-scale) flows.

Energy spectra in turbulence

Navier-Stokes equations for a constant-density fluid:

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\frac{1}{\rho_0} \boldsymbol{\nabla} p + \nu \nabla^2 \boldsymbol{u}, \quad \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0,$$

in T^2 or T^3. Turbulence for Re = UL/ $\nu \gg$ 1.

Kinetic energy spectrum

$$E(k) = \sum_{\boldsymbol{k}=|k|} \frac{1}{2} \boldsymbol{u}(\boldsymbol{k}) \boldsymbol{u}(\boldsymbol{k})^*$$

3-D (Kolmogorov)

 $E(k) \sim k^{-5/3}$ [inertial range]

2-D (Batchelor-Leith-Kraichnan

 $E(k) \sim k^{-3}$ [small scales; enstrophy range]

E(k) ~ k^{-5/3} [large scales; energy range]

Quasi-geostrophic turbulence is essentially identical.

The real atmosphere cannot be described exactly by 2-D or quasigeostrophic turbulence.

Conventional view is that the classical picture carries over straightforwardly to the real atmosphere.

Key quantity: eddy turnover time

$$\tau(k;k_1) = \left(\int_{k_1}^k k'^2 E(k')dk'\right)^{-\frac{1}{2}}$$

For $E(k) \sim k^{-p}$ and $k \rightarrow \infty$

Upshot: predictability behaviour depends crucially on the atmospheric energy spectrum.