ENSEMBLE ASSIMILATION OF STRATOSPHERIC TEMPERATURE AND OZONE OBSERVATIONS IN A CHEMISTRY-CLIMATE MODEL

Thomas Milewski and Michel Bourqui

McGill University

thomas.milewski@mail.mcgill.ca

ENSEMBLE ASSIMILATION OF STRATOSPHERIC OBSERVATIONS IN A CCM - p. 1/21

Motivation

INTRODUCTION

Motivation

Objectives

Outline

EXPERIMENTAL SETUP

LOCALIZATION SENSITIVITY STUDY

CHEMISTRY-DYNAMICS INTERACTION

CONCLUSIONS

Ensemble methods are computationally expensive, but produce along-the-flow error covariances :

can produce spatial, cross-variable, temporal error covariances.

excellent for data-sparse regions.

potential of improving global stratospheric winds from ozone or temperature observations

Objectives

INTRODUCTION

Motivation

Objectives

Outline

EXPERIMENTAL SETUP

LOCALIZATION SENSITIVITY STUDY

CHEMISTRY-DYNAMICS

CONCLUSIONS

We are experimenting stratospheric chemical and dynamical ensemble data assimilation, incorporating synthetic ENVISAT-MIPAS temperature or ozone retrievals to chemistry-climate model forecasts using an Ensemble Kalman Filter (EnKF).

We wish to explore the potential of ensemble covariances, especially chemical-dynamical ones, and their skills at constraining the atmospheric fields.

Outline

INTRODUCTION Motivation Objectives Outline EXPERIMENTAL SETUP LOCALIZATION SENSITIVITY STUDY CHEMISTRY-DYNAMICS INTERACTION CONCLUSIONS Data assimilation system and experimental setup

Sensitivity study on localization parameters

Chemistry-Dynamics interaction in data assimilation cycle

Experimental setup : EnKF

EnKF with perturbed obs (Evensen, 1994; Burgers, 1998)

$$\delta x = \mathbf{K_e} \ d$$

 $\delta x = x^a - x^f$ = analysis increments $d = y - \mathcal{H}(x^f) = \text{innovations}$ $\mathbf{K}_{\mathbf{e}} = \mathbf{P}_{\mathbf{e}}^{\mathbf{f}} \mathbf{H}^{\mathbf{T}} (\mathbf{H} \mathbf{P}_{\mathbf{e}}^{\mathbf{f}} \mathbf{H}^{\mathbf{T}} + \mathbf{R})^{-1} = \text{Kalman Gain}$

$$\mathbf{P}_{\mathbf{e}}^{\mathbf{f}} = \frac{1}{\text{Nens}} \sum_{m=1}^{\text{Nens}} (x_m^f - \overline{x^f}) (x_m^f - \overline{x^f})^T$$

= sample background error-covariance matrix

- $\mathbf{R} = observations error-covariance matrix (prescribed)$
- $\mathcal{H} = \text{model-to-observation-space matrix}$

INTRODUCTION

EXPERIMENTAL SETUP

EnKF theory

Chemistry-Climate Model

Filter Configurations

Observations

LOCALIZATION SENSITIVITY STUDY

```
CHEMISTRY-DYNAMICS INTERACTION
```

CONCLUSIONS

Experimental setup : CCM

CHEMISTRY-CLIMATE MODEL (CCM)

INTRODUCTION	

EXPERIMENTAL SETUP

EnKF theory

Chemistry-Climate Model

Filter Configurations

Observations

LOCALIZATION SENSITIVITY STUDY

CHEMISTRY-DYNAMICS INTERACTION

CONCLUSIONS

IGCM (Forster et al, 2000):

- Multilayer spectral GCM run at T21L26, lid at 0.1 hPa
- · Intermediate-complexity physics parametrization
- · Prescribed surface temperatures
- FASTOC (Taylor and Bourqui, 2005):
- · Fast surrogate chemistry scheme
- Based upon comprehensive box model by Fish and Burton (1997), with JPL02 rates.
- · Timestep: 24 hrs (diurnal-averaged chemistry)
- \cdot Represented catalytic cycles: O_{x} , HO_{x} , NO_{x} .
- \cdot Advected species: O_x , N_2O_5 , NO_x , HNO_3

Experimental setup : filter configurations

- Initial ensemble is climatological with 128 members (Jan 1st of each year)
- · Twin experiment
- · Perfect-model hypothesis
- Sequential Double-EnKF assimilation of observations by batches (Houtekamer & Mitchell, 2001)
- Horizontal and vertical covariance localization
- \cdot No covariance inflation
- · Analysis performed every 24 hours

Experimental setup : observations

INTRODUCTION

EXPERIMENTAL SETUP

EnKF theory

Chemistry-Climate Model

Filter Configurations

Observations

LOCALIZATION SENSITIVITY
STUDY

CHEMISTRY-DYNAMICS INTERACTION

CONCLUSIONS

Synthetic MIPAS-like temperature retrievals with 2K error

Synthetic MIPAS-like ozone retrievals with 10% error

- Diagonal R matrix
- · Obs instantaneous at 00UTC
- Vertical coverage between 4hPa and 200hPa on pressure levels
- Horizontal coverage on model grid points :

Localization

Sensitivity Study

Sensitivity Study

Optimal parameters

Inflation Diagnostics

Inflation Diagnostics

Inflation Diagnostics

Chemistry-dynamics interaction

Experiments

INTRODUCTION

EXPERIMENTAL SETUP

LOCALIZATION SENSITIVITY STUDY

CHEMISTRY-DYNAMICS INTERACTION

Experiments

 $ullet \mathbf{T}$ assimilation : effect on \mathbf{T} analysis

• T assimilation : effect on O_x analysis

 $\bullet O_{\mathbf{X}}$ assimilation : effect on

 $O_{\mathbf{X}}$ analysis

• O_X assimilation : effect on u analysis

Schematics

CONCLUSIONS

"Control" temperature assimilation

"NoChem" temperature assimilation : no temperature-chemistry cross-covariances

"Control" ozone assimilation

 "NoDyn" ozone assimilation : no ozone-dynamics cross-covariances

Simulation are run for 60 day. We take time averages over the last 45 days of RMSE and SPREAD and we analyze them for each variable and scenario.

${\rm T}$ assimilation : effect on ${\rm T}$ analysis

${\rm T}$ assimilation : effect on ${\rm O}_{x}$ analysis

O_x assimilation : effect on O_x analysis

$\mathbf{O}_{\mathbf{x}}$ assimilation : effect on \mathbf{u} analysis

Summary

LOCALIZATION :

INTRODUCTION

EXPERIMENTAL SETUP

LOCALIZATION SENSITIVITY STUDY

CHEMISTRY-DYNAMICS INTERACTION

CONCLUSIONS

Summary

Future work

- Optimal simulations have very long localization parameters for temperature covariances ($C_h = 14000$ km and $C_v = 10$ units of log-pressure).
- Shorter localization for ozone covariances ($C_h = 5600$ km and $C_v = 4$).
- "Superoptimal" assimilation (RMSE < SPREAD) → noisy covariances but reduced likelihood of filter divergence.</p>

CHEMISTRY-DYNAMICS INTERACTION :

- On daily timescales, radiation can not transfer chemical increments into dynamical ones.
- $\blacksquare \rm T-O_x$ covariances permit to slightly improve the ozone analysis.
- $O_x u$ and $O_x T$ covariances permit to constrain wind motion during ozone assimilation.

Future work

INTRODUCTION

EXPERIMENTAL SETUP

LOCALIZATION SENSITIVITY STUDY

CHEMISTRY-DYNAMICS INTERACTION

CONCLUSIONS

Summary

Future work

■ Relative importance of $O_x - u$ and $O_x - T$ covariances in constraining the dynamics.

 Assimilate asynchronous observations : Ensemble Kalman Smoother (EnKS)

Other flavours of ensemble data assimilation : ensemble square-root filter.

INTRODUCTION

EXPERIMENTAL SETUP

LOCALIZATION SENSITIVITY STUDY

CHEMISTRY-DYNAMICS

INTERACTION

CONCLUSIONS

Summary

Future work

THANKS ! ANY FEEDBACK IS HIGHLY APPRECIATED