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Many error statistics estimation approaches

* Observation-space based methods
- Innovations (ex Hollingsworth-Lonnberg)
- Desroziers’ approach

* Model-space based methods (no info on obs error)

- NMC (NCEP) lagged-forecast method MIPAS
- CQC forecast differences - 0H4 ohser:,am;n
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Outline

1. What is the NMC method actually measuring ?
Forecast error, analysis error, something in between ?

We will show that advection has an averaging effect on error covariances
and will find an interpretation in the context of assimilation
of limb sounding observations of long-lived chemical species

We will get a new approach to estimate model error covariance
2. Convergence analysis of the Desroziers’ method

Whether or not it converge and to which value it converges to
will be examined.

Important to distinguish the constrained and unconstrained formulation
of the Desroziers’ method



NMC method for the chemical tracer assimilation

Evolution of mixing ratio
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D—’L; = a—l: +V-Vu=0 Mixing ratio is a conserved quantity

Dt

Evolution of errors 2°¢ 0
€7 model error

¢ (mixing ratio error) = u — u"™*
Evolution of the error covariance

Covariance of mixing ratio error between a pair of points
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Error covariance is conserved (without model error)



Simplified form of NMC method

» For linear H, and taking the difference between analyses (0-hour forecast) with
6-h forecast valid at 0-hour

x“(0) - x/(0) =K(y(0) - Hx’((0)) = K(Hx' (0) + £”(0) - Hx/((0))
= K("(0)- He/(0))
EKX{6(0) —x(0) Jx/, (0) = x“(0) J=KHPf H'K’ + KRK”
-KEHP'H+RK'
-K(HP'H +RJHP'H + R ) HP’
= KHP/
~ P/,(0)-P*(0)

and more generally...

Ef,02)-x;02) X, (02 -x{12)) M, 1P 0) - Peo)m,,



Error covariance budget : KF on isentropic coordinate
limb sounding observations
Error covariance budget (Kalman-Bucy filter, assimilation each time step)
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Taking the average over a day,
shows that the observation contribution balances
the model error contribution

OAt = KHP = E[(x” —-x")(x’ —-x*)"]
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The effect of advection on error covariances is averaged out
on a time-mean (day) thus the NMC method for this particular
problem is simply a measure of the model error covariance



Simple analysis
The asymptotic solution of the Kalman filter
P/ = MP'M’ +Q
P’ =(I-K H)P/

Assuming H=I (mimics limb sounding observations)
and M=I (mimics advection averaging)

IS
P/ =[1-P; (P +R)']P] +Q

from which we get
KP/ = signal covariance = Q

Conclusion

It turns out the we have developed a method to estimate the

model error covariance in dense observation network and
under advection dynamics only



The Desrozier’s method

R ., = (I-HK )(HBH +R)
=R (HB H +R )"'(HBH +R)
HB H' = HK (HBH+R)
-HB H'(HB H' +R )" (HBH +R)

where assimilation residuals are used to provide the information
about the error statistics

((O-F)O-F)") =HBH' +R
(0-4,,X0-F)")=R,,,
(4,,~F)O-F)")=HB, H’

n+l



Illustration - scalar case

Iteration on observation error variance

((0-4)(0-F)") = R(HBH" +R)"'(HBH +R)

where <(O - F)(O - F)T> = HBH' +R is obtained from assimilation residuals
and overbar denotes prescribed error covariances

i)- Correctly prescribed forecast error variance
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R=(xR=a(702 optimal value o =1
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et ((0-A4)(O-F))=a,, 0. bethe nextiterate

so the iteration on &, takes the form

|
an+1 = an (L

)= Gla,)

oy +1
Define a mapping G
y +1 o .
G(OC) = n+l *
Ex) g
The fixed-point is /
O{*=G(0{*) ) o

condition for convergence
G'(a’)

<1 o




and so for this case we get o™ =1

2
1 O

G'(a") = =K <1

y+1 o) +0;
the scheme is always convergent and converges to the true value, o =1

ii)- Incorrectly prescribed forecast error variance
B=pB=(0; R=aR=ao’
the mapping is now different

1
an+1 =an ( y+

)= Gla,)

a,y+p



The fixed-point is @2 )
_ -0
o =141 b1, X797,
Y o

2
0

that is not the true observation error value.

* |f forecast error variance is underestimated, obs error is overestimated
o |f forecast error variance is overestimated, obs error is underestimated

g Bo,

G'(a”) = =
(@) y+1 o +0;

. . —2
Will not converge if: B0’ =0, >0. +0;

In practice the estimated forecast error variance will never be larger than

the innovation error variance, so for all practical cases the scheme
converges.




Iteration on observation error variance

Error variance (n) / reference error variance
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Iteration on both observation and background error

Consider the case of tuning together o0 and ,B

+1 +1
an+1 =an y = G(an’/))n) /J)n+1 =/5n y— = F(an’ﬁn)
The mapping is an attractor
00G.F) _  y+l B, =, is rank deficient ! and its determinant is 0
dca,,pB,) (@y+B,)N-B,y a,y| Sothescheme is strongly convergent

The fixed-point solution (thick black line)
(@ -Do, +(B"-1o; =0

corresponds to where the estimated
total variance (obs + background) is

/ equal to that of the innovation variance




Accounting for spatial correlation - Spectral Analysis
Case where the background error covariance is spatially correlated
and the observation error covariance is spatially uncorrelated

Assume an homogeneous B in a 1D periodic domain with observations
at each grid points, H=1.
We can write the Fourier transform as a matrix F, and its inverse as FT

Then in the system
Rn+l = Rn (Bn + Rn)_l(B + R)
Bn+l = Bn(Bn + Rn)_l (B + R)

All matrices can be simultaneously diagonalized giving a NV systems
of scalar (variance) equations (one for each wavenumber k)

n . y +l A

R, (k) = R,(k)B,(h)+R, (k)" Bk +R(k) |, a”(o?nﬂﬂn ()

B, (k) = B,(k) B,(0)+R, (k)" Bh) +RMK) "~ 5 _ ﬁ( O\ pa g
ay +B,

but for each wavenumber we have the same ill-conditioned system as before
additional information is therefore needed



Constrained Desroziers’ method
Let’s introduce a correlation model

R,(k) = a,0;r(L,)
B,(k) = B,0;b(Ly)

so there is only a total of four parameters o, 8, L, and L,
And the iteration equations then take the form

a,, =0q, i i (L) 1 (L) + b (L )]
= a,yn(L,) + B,b.(Ly)
N b (L)y r (L) +b,(Ly)]

= a,yn(L,) + b (L)
This system has also the innovation attractor solution

an+1y +ﬁn+l = any-l_/jn = )/+1

n+1 ﬁ



If L, =L, and L, =L, then it can be shownthat & = 8 =1
the estimated variances and the true variances
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if L, >L", while L, =L, then @ >1 and g <1
i.e. the estimated background error variances is underestimated,
and the estimated observation error is overestimated
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if L, <L, while Ly =L, then @ <1 and g >1
I.e. the estimated observation error variance is underestimated and
and the background error variance is overestimated

3 ; ! ! !
25k ............ ........... ........... .......... i
2 ......................................................................
B -1 T O RSP SO
1._ ................................................................ -
o i 5 : :
05_. ........... \ .......... e ...........
" ; .
0 0.5 1 1.5 2 25 3
o

case where the true observation error correlation length is 50 km,
but is prescribed as spatially uncorrelated



Summary and future work

* The convergence analysis of the Desroziers’ method to included the
estimation of the correlation length scales can be made by taking the
second moments of the spectral equations. The problem of estimating
three parameters (out of four) and all four parameters will be investigated

» The estimation of the error variances is sensitive to the misspecification of

observations error correlation length (more than what they are from
misspecification of the background error correlation length scale)

* In its simplest form the NMC method (forecast minus analysis) and
when applied for chemical tracers with a dense observation network,
provide an estimate of the model error covariance. In the meteorological

context and with longer assimilation windows, these conclusions have to
be revised

* It is not clear what the CQC forecast difference method is actually providing.
The estimate is of course dependent on the model error covariance, but
but depend also on the correlation of the advection terms

<(V1 Vi )(V, 'VM2)>

that may easily introduce smaller scales variances and correlations



Merci
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pressure mb

pressure mb

Tuning in alternance —CH4
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