Y. Yang R. Ménard and Y. Rochon Air Quality Research Division, Environment Canada

Introduction
Accurate estimation of the observation and background error statistics plays an important role in ata assimilation as they determine, at analysis time, the weight and spatial influence function of deservations and possibly the impact on other variables. The observation error which is useful or data assimilation is best estimated within an assimilation cycle. On the other hand, the background error, or short term forecast error, is not independent of the observations and can systems, however, the observation error and background error are prescribed. An improper characterization of the observation and background error statistics will lead to a suboptima assimilation scheme. Desrosiers and Ivanov(2001) and Desrosies et al(2005) developed a method to tune observation and background error using the diagnosis computed from analysis residuals. In this work we apply the method to the 3D-var assimilation system of Canadian Meteorological Center (CMC) and use it to tune the observation error iteratively for dynamic

Innovation-based diagnostics and estimation

The χ^{2} diagnostic is a measure of consistency between the variances of random variables. This diagnostic has been used in many applications such as geophysics (Tarantola, 1987), atmospheric retrievals (Rodgers 2000), and data assimilation (Bennett and Thornburn 1992, Talagrand 1999, Ménard and Chang 2000) where the random variable is a residual or innovation, i.e. the difference between observations and the model equivalent (at the same time and location). For data assimilation χ^{2} is defined as

$$
\chi^{2}=\mathbf{d}^{T} \Gamma^{-1} \mathbf{d}, \quad \mathbf{d}=\mathbf{y}-\mathbf{H x}^{f}
$$

where \mathbf{d} is the innovation, and
$\Gamma=\mathbf{H B H}^{T}+\mathbf{R}$
(2)
is the a priori innovation covariance, \mathbf{B} is the prescribed background error covariance and \mathbf{R} is the prescribed observation error covariance and \mathbf{H} is the observation operator. The expected value of χ^{2} is given as

$$
\left\langle\chi^{2}\right\rangle=\left\langle\mathbf{d}^{T} \Gamma^{-1} \mathbf{d}\right\rangle=\operatorname{trace}\left(\Gamma^{-1} \bar{\Gamma}\right)
$$

Where $\overline{\boldsymbol{\Gamma}}=\langle\mathbf{d d}\rangle$ is the sample covariance of the innovations. If the sample covariance of the innovation matches the given or prescribed innovation covariance, i.e. $\bar{\Gamma}=\bar{\Gamma}$, then

$$
\left\langle\chi^{2}\right\rangle=m
$$

(4)
where m is the dimension of the observation space or the number of observations.
In 3D and 4D-Var, the value of χ^{2} can be obtained directly from the value of the cost function at the minimum as follows

Model and experiment

For dynamic assimilation, an earlier version of CMC's GEM-Strato model and 3D-Var system was used to
 assimilation. This run is for winter 2003
For chemistry assimilation, we used an updated model of GEM-Strato, which incorporats the BIRA (Belgian Institute for Space Aeronomy) chemistry module. This experiment assimilates MIPAS measurements of CH4,
with dynamic fields refreshed from another run that assimilated dynamics data mentioned above. This run was for summer 2003.

Diagnostics of dynamics assimilation runs before and after tuning observation error variances

AMSUB, NH before tuning

AMSUA, NH after tuning obs. error variances
AMSUB, NH after tuning obs. error variances

RAOBS TT, NH before tuning

Results of iteratively tuning the observation error variances

Ratio of <OmA, OmP>/R for RAOBS
Tuning background error for MIPAS CH4

MIPAS CH4 before tuning

-60	-30
Lotitude (degress)	

Tuning coefficient
and background
Tmuing cosfinicient

MIPAS CH4 after tuning

$\boldsymbol{\chi}^{2}$ diagnostic

If Condition I is fulfilled, then

$$
\left\langle O_{m A}(O m F)^{T}\right\rangle=\mathbf{R}
$$

$$
\left\langle A m F(O m F)^{T}\right\rangle=\mathbf{H B H}^{T}
$$

Also from (8) and (9) we have $\left.{ }^{m}\right)^{T}\left\langle+\left\langle A m F(O m F)^{T}\right\rangle=\mathbf{R}+\mathbf{H B H}^{T}\right.$ (10)
These diagnostics, (6-7), defined in observation space can be directly computed from the analysis residuals, and do not require extra computations.
This algorithm can be applied iteratively. A scalar case study proved that the iteration scheme will always converge. However, if one only tunes the observation (background) error iterativel without tuning the other, the accuracy of the converged value depends on the accuracy of
prescribed background (observation) error. In a realistic system similar to an operational assimilation system, there is no known case of non-convergence except where \mathbf{R} and \mathbf{B} have the same correlation length. Here we will show the result of iterative tuning.

RAOBS UU, NH after tuning obs. error variances
RAOBS TT, NH after tuning obs. error variance

Summary

Error statistics derived from innovations provide an estimate of the errors perceived by the assimntration system, with which error statistics preseribed meanas 3 Dvar system has to be consistent. Two diagnostic methods, namely the χ^{2} test and Desrosiers et al's innovation-based consistency diagnostics are implemented CMC's 3Dvar assimilation system.
Through iterative tuning of AMSU and RAOBS observations, the ratio of $\angle \mathrm{OmA}, \mathrm{OmP}>\mathrm{R}$ are generally converging toward 1.0 , and each iteration yields better consistency than the former one, especially for AMSU observations. For certain RAOBS variables at certain levels the iteration scheme does not seem to converge. For dynamic observations, the iterative tuning consistently improves the χ^{2} test result. The improvement is very consistent in time. The χ^{2} values after the third and forth tuning are very close to 1.0 . Whereas for CH 4 , by tuning the background error variances the improvement on χ^{2} is consistent in time but the impact is vary
limited. limited.

