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Outline

• Why consider the coupling in DA

• GEM-Strato-BIRA model: Description and evaluation
 
• Changes in the Canadian DAS

• Stratospheric forecast skill

• AMSU-a bias in the stratosphere

• Error statistics for chemical species



O3–T correlation using forecast difference method 
      (i.e. Canadian Quick Covariance method)  

Without ozone-rad. interaction With ozone-rad. interaction



From the operational NWP model « GEM »
to the stratospheric GCCM « GEM-Stato-BIRA »

ν Raised upper boundary
from 10 hPa (27 levels) to 0.1 hPa (80 levels)

ν Updated/added physical parameterizations
to improve strato dyn

¬ GEM-Strato

ν Implemented strato photochemistry module
from BASCOE

¬ GEM-BIRA, “passive” chemistry

ν Allowed new chemical fields (O3, H2O) to interact with radiation,
hence dynamics

¬ GEM-BIRA, “active” chemistry



Model grid
ν Horiz. grid: lat-lon, polar poles, 1.5°×1.5° (≈150×150km)

ν Vertical grid: 80 hybrid levels from surface to 0.1 hPa. Comparing
with ECMWF operational grid:

Vert grids for psurf=1013.25hPa
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Either hydrostatic with pressure based vertical coordinate or
    nonhydrostatic with mass-based vertical coordinate

Euler equations in height coordinate
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Under normal atmospheric conditions nonhydrostatic effects become perceptible
 when the scale of interest is < 100 km and necessary when the scale is < 10 km
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Hydrostatic-pressure coordinate system

Continuity equation in any vertical coordinate, s 
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So that     is an hydrostatic-pressure coordinate (or mass coordinate)
system.   The continuity equation retains the same form as with the 
hydrostatic assumption with pressure coordinate. 
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Conserving a similar set of equations, but changing the definition
of the vertical coordinate, GEM can accurately simulate all scales,
from the large (planetary) scale to a plume model (few meters).



♣ Do not conserve any transport properties (e.g. mass, monotonic, …)
    except correlation between tracers (for a number interpolation
    schemes)
♣ Computationally efficient for large number of tracers

         Can save computation in semi-Lagrangian advection transport
          • upstream point (D or M) is the same for all advected species

x x x

x x x

x x x

          • interpolation weights Ci(x) are the same for all advected species

   e.g.  cubic Lagrange interpolation

Semi-Lagrangian Transport
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Chemistry

BASCOE chemistry

• Look-up tables J values (height, overhead total column O3, SZA)
 
• 57 chemical species, all advected

• Ox, HOx, NOx, ClOx, BrOx and few hydrocarbons

• Source species: N2O, CH4, H2O, CFCs, HCFCs and Halons

• 142 gas-phase, 7 heterogeneous and 52 photodissociation reactions

• Photochemical rates are taken from JPL-2002

• Rosenbrock solver 3rd order

• Heterogeneous chemistry is fully resolved, with simplified parameterizations 

   for surface area densities

•  Chemical interface (next official release of GEM) 



Temperature comparison with MIPAS observations
Tropics (30S, 30N)

see S. Chabrillat’s poster



Water vapor comparison with MIPAS observations
Tropics (30S, 30N)

see S. Chabrillat’s poster



Ozone comparison with MIPAS observations
Tropics (30S, 30N)

see S. Chabrillat’s poster
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Simulation of total column ozone



Tropopause folding event March 14th 2006
Ratio HNO3/O3

see A. Robichaud’s poster

2000 km



• 3D-Var extensions

¬ Constituent observations

¬ BUFR format for chemical species:  WMO
proposal

¬ Observation error standard deviations

¬ Observation quality check

¬ Preconditioning: Variable transformations

¬ Background error covariances

¬ Analysis splitting and others



Preconditioning: Variable transformations

• Univariate or multivariate (in two modes) constituent
assimilation.

• Multivariate: Basic infrastructure implemented for
addition of constituent variable transformations (i.e.
application of balance operators).

• Possible variable transformation for ozone:
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Anomaly correlation – a measure of forecast skill

fτ’(t) = fτ(t) – C  ;  aτ’(t) = aτ(t) - C

AnoCor = [< (fτ’ - <fτ’>)(aτ’ - <aτ’>) >]  [< (fτ’ - <fτ’>)2  < (aτ’ - <aτ’>)2 >]-1/2

Correlation between forecast and analysis as a 
function of length of forecast

¬ ensemble of forecast (10 days) is needed  

¬ used in NWP to monitor improvement in model or assimilation 



Temperature correlation (global) anomaly



by regions 



Ozone-radiation interaction



Impact of bias corrected radiances

ν All experiments are in FGAT mode with 4D data
thinning

ν Changes in the assimilation system often leads to
changes in the model bias

ν Bias correction scheme for AMSU-a data

♦ Innovation statistics: ( )( ) yxy =!
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Jacobians with respect to temperature for channels 10-14 of AMSU-a



Without bias correction

With bias correctionWith bias correction



Zonal mean of
temperature
increments

With bias correction

Without bias correction



Mean temperature analysis increments at 10 hPa
(with bias correction applied to AMSU-A channels 11-14)



Mean temperature analysis increments at 10 hPa
(without bias correction applied to AMSU-A channels 11-14)





Average temperatures at the equator
(20-30 Aug. 2003)

AMSU-A
channels

All

None

up to 8



Changes in stability

Transformed Eulerian mean diagnostic

Neglecting zonal mean temperature advection,
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Estimation of error variances and correlations

(from Bouttier and Courtier, 2000, ECMWF)

If the observations correspond to model variables:

with ρ being the correlation function.



Along track innovation covariance – ozone assimilation



Along track innovation covariance – methane assimilation



Error statistics for CH4









Relative error formulation

• observation error that include representativeness
  error can be formulated with a relative error 
 
• background error does not fit a relative error formulation
  ( error std proportional to state ) . 



Other approaches to estimate observation error:
Desrosiers’ method
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Iterative adjustment
   Tuning of the error statistics



Ratio of estimated error variance over the initially prescribed error variance.
Left panel AMSU-A, right panel AMSU-B.  Domain northern hemisphere.



Short term plans

• Adapt the tropospheric bias correction in the light
    of AMSU-a radiance bias ch. 11-14

•  Monitor other chemical data sets for assimilation
    (e.g. GOMOS observation, MIPAS-IMK )  



In a broader context

• This study is a first step towards the development of
  chemical weather capability using operational model and 
  assimilation systems (prototype 2010)
 
• The operational air quality model is currently being 
  implemented online with GEM – operational by 2008 

• Development towards a unified tropospheric-stratospheric
    GCCM envisioned for 2008 


