

Use of Canadian Quick covariances in the Met Office data assimilation scheme

David Jackson, Mike Keil, Ben Devenish

Met Office, Exeter, UK

- Overview of Met Office DA system
 NMC covariances in the N48L50 model
 Canadian Quick (CQ) covariances
 Comparison of results for N48L50 model
 Onwards and upwards first results with a 60 level model
- Summary and Outlook

Met Office DA - overview

- Operational system uses
 4D-Var, N320L50. 50 levels
 from surface to ~63 km.
- But here, trials use 3D-Var, N48L50 (old oper. strat. model)
- Operationally, B is from NMC method (Parrish and Derber, 1992).

Calculation of NMC covariances

Need initial covariances from somewhere Based on T+48-T+24 forecast differences

NMC covariances: operational strat. model

Some Recent History

- In 2003, operational strat. model changed (L40 (Eulerian) to L50 (semi-Lagrangian)).
- New B needed:
 - reconfiguration.
 - run N48L50 analyses,
 - calculate T+48-T+24 diffs,
 - calculate **B**

However, NH summer acceptance tests failed.

Quick solution (fudge?) was required!

- Trials failed because of large analysis increments at upper levels.
- Possibly because **B** also large there.
- Various solutions tried and failed.
- Re-run with analysis increments off above 10 hPa (level 40).
- •Solved problem of trial failure but still need new **B**.

•Re-calculated **B** using forecasts for above trial.

• 2nd iteration – this time with full analysis increments – and recalculation of **B**. More "realistic".

NMC B Bootstrapping (3) (T, June)

Pressure (log scale)

1000.0

-90

0

LATITUDE

30

60

90

Top left – original reconfigured B
 Top right - after 1st iteration
 Bottom left – after 2nd iteration

-30

-60

•Acceptance trials ran successfully. Verification v sondes and analyses seemed to indicate positive benefit.

• Bootstrapped **B** was used in Met Office strat analyses Oct 2003-Mar 2005

•But there is a lot of "noise" in the new **B**

Based on 6 hour differences through a long forecast model run.

Can generate B MUCH faster than NMC method

- Easily applicable to new model resolutions, without need to reconfigure pre-existing B.
- Migrating diurnal and semi-diurnal tidal signals are removed (by subtracting monthly means).

CQ covariances (T, June)

Lot of similarity to NMC B, but variances smoother

No scaling done (as at MSC) – used unaltered in trials

Pairs of N48L50 trials run, with NMC and CQ covariances

Trials run for Jul 2005 and Jan 2005

Focus on T - validation against EOSMLS data

* bias wrt ACE/HALOE/CHAMP/GEOS-4:
0 to 4 K (variable)100-1 hPa (Livesey et al, 2005)

Trials: NMC v CQ (July)

Trials: NMC v CQ (January)

Page 14

Theta (normalised) increments (January)

A6 hour assimilation cycle (ATOVS only)

SPARC DAWG, Noordwijk, Oct 2-4 2006.

© Crown copyright 2006

Summary of differences in results

Socillating pattern in NMC errors in winter mid-high lats above 10 hPa; mean and RMS errors higher for NMC.

- Differences largely similar with T+24, T+48 forecasts – "noise" does not quickly leave the system.
- Explains why these features not seen in previous verification v sondes, analyses. Shows value of EOSMLS data.
- Spurious vertical oscillations in operational analyses reported by other scientists (eg G. Manney) – so the problem appears to lie with the NMC B.

A research N48L60 model is available, with levels from surface to ~84 km

CQ covariances calculated; July 2005 trial run

Trials: NMC v CQ L60 (July)

Solution 30-Var analyses have imperfect mass/wind balance.

Leads to spurious IGWs which are generated to restore this balance.

These waves have a lifetime of ~1 day – their signal could be seen in T+48-T+24 differences used for NMC B.

Little or no such signal in CQ

Velocity potential correlations (January) Met Office NMC CQchi correlations with level 29 chi chi correlations with level 29 chi to 2/1 /2003, 31 cases 37 12 2002 2004 to 20/12/2004, 79 cases 2 0.1 0.1 1.0 Pressure (log scale) 1.0阜 scale) (log 10.0 10.0 Pressure 100.0

100.0

1000.0

-90

8.2

-60

-30

0

LATITUDE

30

60

90

-30

-60

1000.0

-90

90

8.8

60

30

0

LATITUDE

V analysis increments (January)

Is this a realistic increment? Could spurious signals be spread to other locations?

Vertical velocity standard devs (July)

Std w 30-90

Smaller stdevs = 10. less spurious IGWs? 100.0 Stdevs always sl Std w 305-30 smaller for CQ. 10.0 But so what? 100.0 Need further 1000.0 Std w 30-90 transport / trajectory / constituent assim studies 10.0 100.0 1000.0 E CQ (red), NMC (black)

SPARC DAWG, Noordwijk, Oct 2-4 2006.

© Crown copyright 2006

Page 22

CQ produces very good results, without scaling – quick and easy!

EOSMLS is an excellent dataset for validating the results.

Noise in NMC B leads to noisy analyses and forecasts – issue for researchers (eg G. Manney, pers. comm).

More spurious inertial gravity waves in NMC than CQ? – issue for constituent assimilation?

CQ can be easily and effectively applied to new model formulations (eg L60).

Met Office will change operational model from L50 to L70 (~80 km upper level) in 2007.

Current view is that NMC will be retained for operational model.

But CQ will play a vital role in developing initial covariances for trialling (and possibly more..)

Questions?