Problem Set 1

1. In the scalar example of section 1.6, show that the analysis error is uncorrelated with the observation increment, i.e.

$$
<\epsilon^{a}\left(\epsilon^{\mathrm{obs}}-\epsilon^{b}\right)>=0 .
$$

2. In the simple scalar example, suppose that the observation and background errors are now biased, i.e.

$$
<\epsilon^{\mathrm{obs}}>=b^{\mathrm{obs}}, \quad<\epsilon^{b}>=b^{b} .
$$

Construct new variables that are unbiased:

$$
\begin{align*}
\tilde{\mathrm{x}}^{\text {obs }} & =\mathrm{x}^{\mathrm{obs}}-b^{\mathrm{obs}} \\
\tilde{\mathrm{x}}^{b} & =\mathrm{x}^{b}-b^{b} . \tag{1}
\end{align*}
$$

(a) Form the analysis equation in terms of errors.
(b) Show that $\left\langle\mathrm{x}^{a}-\mathrm{x}^{t}\right\rangle=0$.
(c) Find W that minimizes $\left\langle\left(\epsilon^{a}\right)^{2}\right\rangle$.
3. a) Consider a Gaussian variable, x , with mean μ and variance σ^{2}. Let $\mathrm{y}=a \mathrm{x}+b$. What is the pd.f. of y ?
b) Show that the linear transformation of a normally distributed vector is also normally distributed. That is, show that for a given normally distributed vector \mathbf{x}, with mean $\mu_{\mathbf{x}}$ and covariance $\mathbf{R}_{\mathbf{x}}$, the linear transformation

$$
\mathbf{y}=\mathbf{A x}+\mathbf{b}
$$

produces a normally distributed vector \mathbf{y} with mean $\mu_{\mathbf{y}}=\mathbf{A} \mu_{\mathbf{x}}+\mathbf{b}$ and covariance $\mathbf{R}_{\mathbf{y}}=$ $\mathbf{A R}_{\mathbf{x}} \mathbf{A}^{T}$.
4. Consider the following three distributions:

1) Uniform:

$$
p_{\mathrm{x}}(x)= \begin{cases}\frac{1}{2 \sqrt{3}}, & \text { if }-\sqrt{3} \leq x \leq \sqrt{3} \tag{2}\\ 0, & \text { otherwise }\end{cases}
$$

2) Triangular:

$$
p_{\mathrm{x}}(x)= \begin{cases}\frac{(\sqrt{6}+x)}{6}, & \text { if }-\sqrt{6} \leq x \leq 0 \tag{3}\\ \frac{(\sqrt{6}-x)}{6}, & \text { if } 0<x \leq \sqrt{6} \\ 0, & \text { otherwise }\end{cases}
$$

3) Gaussian, where x is $\mathcal{N}(0,1)$:

$$
\begin{equation*}
p_{\mathrm{x}}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} \tag{4}
\end{equation*}
$$

a) Plot these curves for $x=-4.0: 0.1: 4.0$.

```
x=-4.0:.1:4.0;
plot(x,uniform(x),x,triang(x),x,gauss(0,1,x))
```

The script names should end in ".m". As an example, here is gauss.m

```
function y=gauss(mean,sig,x)
n=size(x,2);
y=zeros(1,n);
y=(1/sqrt(2*pi*sig)).*exp(-0.5.*((x-mean)/sig).^2);
```

Note that a dot before an operator indicates a matrix operation.
b) What is the mean and variance for each distribution? Calculate this by hand, not numerically.
c) The MATLAB function $\operatorname{RAND}(\mathrm{n}, 1)$ generates n samples from a uniformly distributed r.v. in the interval $(0,1)$. Using this, generate n samples of the uniform p.d.f. in (1). Plot the sample p.d.f. for a number of different n's. What is a value of n that will produce a good discription of the true p.d.f.? Use hist(y, x) to produce a histogram of function y over the x-grid.
d) Repeat part (c) except for the normal distribution using the MATLAB function RANDN.
5. Consider the bivariate Gaussian p.d.f.:
$p_{\mathrm{xy}}(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}} \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{x}\right)^{2}}{\sigma_{\mathrm{x}}^{2}}-2 \rho \frac{\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}}+\frac{\left(y-\mu_{y}\right)^{2}}{\sigma_{\mathrm{y}}^{2}}\right]\right\}$.
a) Show that the marginal densities $p_{\mathrm{x}}(x)$ and $p_{\mathrm{y}}(y)$ are Gaussian. It is sufficient to show that $p_{\mathrm{x}}(x)$ is Gaussian and note the symmetric roles of x and y in the definition of $p_{\mathrm{xy}}(x, y)$. b) Show that the conditional p.d.f. of $p_{\mathrm{x} \mid \mathrm{y}}(x \mid y)$ is $\mathcal{N}\left(\mu_{x \mid y}, \sigma_{x \mid y}^{2}\right)$ where $\mu_{x \mid y}=\mu_{x}+\rho \sigma_{\mathrm{x}}(y-$ $\left.\mu_{y}\right) / \sigma_{\mathrm{y}}$ and $\sigma_{x \mid y}^{2}=\sigma_{x}^{2}\left(1-\rho^{2}\right)$.

