
Chapter 5

The Linear Kalman Filter

In this lecture we derive and study the Kalman �lter and its properties for the case of time{

discrete dynamics and time{discrete observations. The case of time{continuous dynamics

with time{continuous observations is mentioned without many details, and the case of time{

continuous dynamics with time{discrete observations is not considered is this course. The

content of this lecture can be found in classic books of stochastic processes and estimation

theory, such as, Anderson & Moore [1], Gelb [60], Jazwinski [84], Meditch [103], and Sage &

Melsa [121]. In this lecture, we also introduce a convenient notation to treat the assimilation

problem of meteorological and oceanographic data, to be discussed in lectures that follow.

5.1 Derivation of the Linear Kalman Filter

5.1.1 Estimation Problem in Linear Systems

We derive the Kalman �lter using the estimation approach of minimum variance, following

the derivation of Todling & Cohn [129], which deals with the problem of atmospheric data

assimilation to be studied later.

Consider a time{discrete, linear stochastic dynamical system written in matrix{vector no-

tation as

wt
k = 	k�1w

t
k�1 + b

t
k�1 ; (5.1)

for the discrete times tk, with k = 1; 2; : : :, and where wt
k is an n{vector representing the

true state of the system at time tk , 	k is an n � n matrix that represents the dynamics,

and the n{vector btk is an additive random noise, which we refer to as the model error. The

process btk is assumed to be white in time, with mean zero and (co)variance Qk , that is,

Efbtkg = 0 ; Efbtk(b
t
k0)Tg = Qk�kk0 : (5.2)

Consider also a linear observation process described by

wo
k = Hkw

t
k + b

o
k ; (5.3)
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where k now is a multiple of `, the number of time steps of between two consecutive

observations in time. The mk{vector w
o
k is the vector of observations, the matrix mk � n

represents a linear transformation between the true variables into the observed ones, and

the mk{vector b
o
k is an additive noise, representing error in the observational process, as for

example, error due to instrument accuracy. We assume that the random noise vk is white

in time, with mean zero and (co)variance Rk, that is,

Efbokg = 0 ; Efbok)(b
o
k0)Tg = Rk�kk0 ; (5.4)

We also assume that the observation noise vk and the model error are uncorrelated, that

is,

Efbtk(b
o
k0)Tg = 0 : (5.5)

The problem treated in the previous lecture was that of estimating wt
k given the observation

process (5.3) alone. In this lecture, we add to the estimation problem the constraint that

the variable of interest comes from the linear stochastic dynamical system (5.1). However,

since the dynamical system in (5.1) involves the stochastic noise btk and an unknown initial

state, we replace that model by what we refer to as a forecast model that we write as

w
f

k
= 	k;k�`w

a
k�` ; (5.6)

where the symbol f stands for forecast and the symbol a stands for the \initial" condition

at time tk�` , from which we start a forecast, and referred to as the analysis. The forecast

model represents another way we have of estimating the state of the system at a particular

time. The matrix 	k;k�` is the propagator, or transition matrix, between times tk�` and

tk , and is given by

	k;k�` � 	k�1	k�2 � � �	k�` ; (5.7)

where here we make a distinction between the propagator and the one{time step dynamics

through the double subscripts to indicate the propagator.

An estimate of the state of the system at time tk can be obtained by means of a linear com-

bination between the observation at time tk and the forecast at the same time. Therefore,

we can write for the estimate wa
k at time tk ,

wa
k =

~Lkw
f

k + ~Kkw
o
k ; (5.8)

where ~Lk and ~Kk are weighting matrices still to be determined.

Let us de�ne the forecast and (estimate) analysis errors as

e
f

k � w
f

k �w
t
k ; (5.9a)

eak � w
a
k �w

t
k : (5.9b)

In analogy to what we saw in Lecture 4, we would like to have an estimate that is unbiased.

In this way, subtracting wt
k from both sides of (5.8), as well as from w

f

k in that expression,

and using (5.3) it follows that

eak =
~Lke

f

k + ~Kkb
o
k + (~Lk + ~KkHk � I)w

t
k (5.10)
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Now assuming that the forecast error, at time tk , is unbiased, that is, Efe
f

kg = 0, we should

satisfy

(~Lk + ~KkHk � I)Efw
t
kg = 0 (5.11)

to obtain an unbiased estimate (analysis), i.e., Efeakg = 0. As in general Efwt
kg 6= 0, we

have that
~Lk = I� ~KkHk (5.12)

is the condition for an unbiased wa
k.

Substituting result (5.12) in (5.8) we can write for the estimate of the state of the system

wa
k = w

f

k + ~Kk(w
o
k �Hkw

f

k) ; (5.13)

and for the estimate error

eak =
�
I� ~KkHk

�
e
f

k
+ ~Kkb

o
k : (5.14)

The weight matrix ~Kk, or gain matrix as it is more commonly known, represents the weights

given to the di�erence between the observation vector and the forecast transformed by the

observation matrixHk . We have seen in Lecture 4, that di�erent procedures come up with a

formula for the estimate that resembles (5.13), however they use distinct gain matrices, e.g.,

recall the comparison between minimum variance estimation and least squares estimation.

Using (5.1) and (5.6) it follows that

e
f

k
= 	k;k�le

a
k�l �

l�1X
j=0

	k;k�jb
t
k�j�1 ; (5.15)

which is an equation for the evolution of forecast error.

Introducing the forecast and analysis error covariance matrices

P
f

k
� Ef(wt

k �w
f

k
)(wt

k �w
f

k
)Tg (5.16a)

Pa
k � Ef(wt

k �w
a
k)(w

t
k �w

a
k)

T
g ; (5.16b)

we can proceed as in Section 3.2.2 to obtain an expression for the evolution of the forecast

error covariance:

P
f

k
= 	k;k�lP

a
k�l	

T
k;k�l +

l�1X
j=0

	k;k�jQk�j�1	
T
k;k�j ; (5.17)

which is a form equivalent (iterated) to the discrete Lyapunov equation (3.40).

An expression for the (estimated) analysis error covariance Pa
k can be determined by multi-

plying (5.14) by its transpose and applying the ensemble average operator to the resulting

expression. Therefore, we have

Pa
k = (I� ~KkHk)P

f

k(I�
~KkHk)

T + ~KkRk
~KT
k ; (5.18)

which is referred to as Joseph's formula. Equations (5.17) and (5.18) completely describe the

evolution of errors in the forecast and analysis. An interesting property of the equations for
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the error (co)variances is that they are independent of the estimates (analysis and forecast),

and also from the observations. The only necessary quantities to predict the evolution of

the error (co)variances are the noise (co)variance matrices, Qk and Rk, the initial error

(co)variance matrix Pa
0, and matrices Hk and ~Kk, at each time tk . In principle, all these

matrices are known, except for the gain matrix ~Kk which is to be determined by means of

an optimization procedure that requires minimum error variance.

5.1.2 The Kalman Filter

To treat the problem stated above in the lights of minimum variance estimation we intro-

duce an estimator that serves as a measure of reliability of the analysis. That is, a quantity

measuring the distance between the estimate and the true value of the state of the system

at time tk ,

J
a
k � Efjjeakjj

2
Ek
g

= E

n
(eak)

T Ek e
a
k

o
= E

n
Tr
h
Ek e

a
k(e

a
k)

T
io

= Tr (EkP
a
k ) : (5.19)

As in Lecture 4, we want this measure of error to be minimum with respect to the elements

of the gain matrix ~Kk. The matrix n� n matrix Ek introduced in the functional above is

a scaling matrix, which we assume to be positive de�nite and deterministic, which in many

cases can be substituted by the identity matrix. As we will see below, the solution of the

minimization J a
k is in fact independent of Ek .

Substituting the expression (5.18) for Pa
k in (5.19), di�erentiating with respect to ~Kk , (using

the di�erentiation rules of Exercise 4.4), and equating the result to zero we obtain

Ek

n
HkP

f

k
(I� ~KkHk)

T
� Rk

~KT
k

o
= 0 (5.20)

Therefore, independently of Ek, the quantity between curly brackets becomes zero for

~Kk = Kk � P
f

kH
T
k (HkP

f

kH
T
k +Rk)

�1

; (5.21)

which corresponds to the minimum of J a
k . The matrix Kk is the optimal weighting matrix,

known as the Kalman gain matrix, since this estimation problem was solved by Kalman [87].

Although estimation problems date back from the times of Gauss [57], it was Kalman who

solved the problem in the dynamical systems context, using the state{space approach. As a

matter of fact, Kalman derived the result obtained above in a much more elegant way based

on the orthogonal projections theorem. The solution obtained by Kalman has practical

consequences that go much beyond previous results in estimation theory. Kalman & Bucy

[90] extended the Kalman �lter to the case of time{continuous dynamics and observation

process. An excellent review of �ltering theory can be found in Kailath [86], and the

in
uence of Kalman's work in several theoretical and applied areas is collected in Antoulas

[3].
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4. Update Error Covariance

Pa
k = (I�KkHk)P

f

k

1. Advance in time

w
f

k = 	k�1w
a
k�1

P
f

k = 	k�1P
a
k�1	

T
k�1 +Qk�1

2. Compute Kalman Gain

Kk = P
f

kH
T
k (HkP

f

kH
T
k +Rk)

�1

3. State Update

wa
k = w

f

k +Kk(w
o
k �Hkw

f

k )

� - �

?

���

6

Figure 5.1: Schematic diagram of the linear Kalman �lter.

Substituting the Kalman gain matrix in the expression for the analysis error covariance

(5.18), it is simple to show that this equation reduces to

Pa
k = (I�KkHk)P

f

k ; (5.22)

which is a simpler expression. The optimal estimate of the state of the system at time tk is

given by (5.13) with a general gain matrix ~Kk replaced by its optimal value, that is,

wa
k = w

f

k +Kk(w
o
k �Hkw

f

k) : (5.23)

Fig. 5.1 shows schematically the steps involved in the execution of the linear Kalman �lter

for the case ` = 1, that is, when the observations are available at each time step. The case

` = 1 will be considered from this point on to keep the notation simple.

5.1.3 Comments: Minimum Variance and Conditional Mean

We saw in the previous lecture that in Bayes estimation theory the estimate of minimum

variance is given by the conditional mean. Let us now establish the connection between

the derivation of the Kalman �lter given above and the example discussed in the previous

lecture, of estimation of a constant vector. What we will see is that, that the example

corresponds to the analysis step of the Kalman �lter.
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Let us indicate by Wo
k = fwo

k;w
o
k�1; � � � ;w

o
1g, the set of all observations (5.3) up and

including time tk. Similarly to the case in the previous lecture, the problem of estimating

the state of the system at time tk, based on the observations Wo
k can be placed as the

problem of determining the conditional probability density p(wt
kjW

o
k), where, to simplify

notation we omit the subscript in p referring to the stochastic process in question. By the

result of Section 4.2.1, we know that

wa
k = Efwt

kjW
o
kg

=

Z
+1

�1

wt
kp(w

t
kjW

o
k) dw

t
k (5.24)

and therefore, knowledge of p(wt
kjW

o
k) is fundamental to determine the estimate.

In fact, using repeatedly the de�nition of conditional probability density we can write

p(wt
kjW

o
k) = p(wt

kjw
o
k;W

o
k�1)

=
p(wt

k;w
o
k;W

o
k�1)

p(wo
k;W

o
k�1)

=
p(wo

kjw
t
k;W

o
k�1)p(w

t
k;W

o
k�1)

p(wo
k;W

o
k�1)

=
p(wo

k
jwt

k
;Wo

k�1
)p(wt

k
jWo

k�1
)p(Wo

k�1
)

p(wo
k
jWo

k�1
)p(Wo

k�1
)

=
p(wo

kjw
t
k;W

o
k�1)p(w

t
kjW

o
k�1)

p(wo
kjW

o
k�1)

; (5.25)

which related the transition probability of interest with transition probabilities that can be

calculated more promptly.

Since the sequence of observational noise fbokg is white, the following simpli�cation applies:

p(wo
kjw

t
k;W

o
k�1) = p(wo

kjw
t
k) (5.26)

and therefore,

p(wt
kjW

o
k) =

p(wo
kjw

t
k)p(w

t
kjW

o
k�1)

p(wo
kjW

o
k�1)

(5.27)

It remains for us to determine each one of the transition probability densities in this ex-

pression.

Assuming the probability distributions of wt
0, b

t
k and vk are Gaussian, we can draw a

straight relationship among the variables here and those in Section 4.3. Speci�cally, we can

identify z with wo
k and w with wt

k, therefore, the probability densities pz(z) and pzjw(zjw)

can be identi�ed with the probability densities p(wo
k) and p(wo

kjw
t
k), respectively. Conse-

quently, we can write for p(wo
kjw

t
k),

p(wo
kjw

t
k) =

1

(2�)mk=2jRkj
1=2

exp

�
�
1

2
(wo

k �Hkw
t
k)

TR�1

k (wo
k �Hkw

t
k)

�
(5.28)

where we notice that

Efwo
kjw

t
kg = Ef(Hkw

t
k + b

o
k)jw

t
kg = Hkw

t
k (5.29)
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and

covfwo
k;w

o
kjw

t
kg � Ef[wo

k � Efw
o
kjw

t
kg][w

o
k � Efw

o
kjw

t
kg]

T
jwt

kg

= Rk : (5.30)

Analogously, we have

p(wo
kjW

o
k�1) =

1

(2�)mk=2j�kj
1=2

exp

�
�
1

2
(wo

k �Hkw
f

k)
T��1k (wo

k �Hkw
f

k)

�
(5.31)

where we de�ne w
f

k as

w
f

k � Efwt
kjW

o
k�1g ; (5.32)

the matrix mk �mk matrix �k as

�k � HkP
f

kH
T
k + Rk ; (5.33)

and the n� n matrix P
f

k as

P
f

k � Ef[wt
k � Efwt

kjW
o
k�1g][w

t
k � Efw

t
kjW

o
k�1g]

T
jWo

k�1g

= Ef[wt
k �w

f

k ][w
t
k �w

f

k ]
T
jWo

k�1g : (5.34)

To fully determine the a posteriori conditional probability density p(wt
kjW

o
k), it remains for

us to �nd the a priori conditional probability density p(wt
kjW

o
k�1). Since we are assuming

that wt
0 and b

t
k are Gaussian distributed, p(wt

k�1jW
o
k�1) is Gaussian, and it follows from

the linearity of (5.1) that p(wt
kjW

o
k�1) is also Gaussian. Therefore, all that remains for us

to determine are the mean Efwt
kjW

o
k�1g and the (co)variance covfwt

k;w
t
kjW

o
k�1g.

From the de�nition (5.32) of w
f

k
we have

w
f

k
= Efwt

kjW
o
k�1g

= 	k�1Efw
t
k�1jW

o
k�1g + Efbtk�1jW

o
k�1g

= 	k�1Efw
t
k�1jW

o
k�1g + Efbtk�1g

= 	k�1w
a
k�1 (5.35)

where the last equality is obtained by observing that btk�1 has mean zero, and by using

the de�nition of the estimate wa
k�1, as the conditional mean at time tk�1. This expression

represents the time evolution of the estimate, and it justi�es the somewhat ad hoc forecast

model that appeared in (5.6). The expression above is also identical to that found in (3.33)

for the evolution of the mean.

The expression for the (co)variance matrix covfwt
k;w

t
kjW

o
k�1g can be easily shown to be

covfwt
k;w

t
kjW

o
k�1g = 	k�1P

a
k�1	

T
k�1 + Qk�1

= P
f

k ; (5.36)

where we recall that to simplify notation we are assuming that observations are available

at all times, that is, the expression above corresponds to that in (5.17) with ` = 1. Fur-

thermore, (5.36) is identical to the time{discrete Lyapunov equation (3.40).
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From the result (5.36) and the de�nition (5.32), we can write

p(wt
kjW

o
k�1) =

1

(2�)n=2jP
f

k j
1=2

exp

�
�
1

2
(wt

k �w
f

k)
T (P

f

k)
�1(wt

k �w
f

k )

�
(5.37)

so that, proceeding as in Section 4.3, the conditional probability density (5.27) of interest

becomes

p(wt
kjW

o
k) =

1

(2�)n=2jPa
kj
1=2

exp

�
�
1

2
J
a
k

�
(5.38)

where Jak is cost function de�ned as

J
a
k � (eak)

T (Pa
k)
�1eak (5.39)

where eak � (wa
k�w

t
k) as in (5.9). We can now identify the quantities ŵMV and P~w of Section

4.3 with wa
k and P

a
k, respectively. Consequently, it follows from this correspondence that

(Pa
k)
�1 = (P

f

k)
�1 + HT

kR
�1

k Hk : (5.40)

Since in Section 4.3 we showed that ŵMV was the minimum variance estimate (4.51) for

the problem dealt in that section, it follows immediately that wa
k
is the minimum variance

estimate of the problem we are studying in this section.

To complete the correspondence between the treatment of this section and that of the pre-

vious section, we notice that the most remarkable di�erence between these two treatments

is that the ensemble average operator of the previous section was the unconditional ensem-

ble average. On the other hand, in this section, the ensemble average operators are the

conditional ones, that is, conditioned on the observations. As a matter of fact, during the

derivation performed in the previous section we advanced the result obtained in this section

that the forecast and analysis error covariance matrices P
f

k and Pa
k are in fact independent

from the observations, see (5.36) and (5.40), that is,

P
f

k
= Ef[wt

k � Efwt
kjW

o
k�1g][w

t
k � Efw

t
kjW

o
k�1g]

T
jWo

k�1g

= Ef[wt
k �w

f

k ][w
t
k �w

f

k ]
T
jWo

k�1g

= Ef[wt
k �w

f

k ][w
t
k �w

f

k ]
T
g ; (5.41)

and

Pa
k = Ef[wt

k � Efwt
kjW

o
kg][w

t
k � Efw

t
kjW

o
kg]

T
jWo

kg

= Ef[wt
k �w

a
k][w

t
k �w

a
k]
T
jWo

kg

= Ef[wt
k �w

a
k][w

t
k �w

a
k]
T
g : (5.42)

Consequently we can replace the conditional error (co)variances by the unconditional error

(co)variances.

Following some remarks in the previous chapter, we see that an equivalent cost function to

that in (5.39), associated to the maximum a posteriori estimate, is

J3dVar(w
t
k) � (wo

k �Hkw
t
k)

TR�1

k (wo
k �Hkw

t
k) + (wt

k �w
f

k)
T (P

f

k)
�1(wt

k �w
f

k) : (5.43)
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This cost function can also be written in its 3{dimensional variational form (e.g., Courtier

[36]), as

J3dVar(�wk) � (vk �Hk�wk)
TR�1

k (vk �Hk�wk) + �wT
k (P

f

k)
�1
�wk (5.44)

where �wk � w
t
k �w

f

k
= �e

f

k
, and we notice that

wo
k �Hkw

t
k = wo

k �Hkw
f

k +Hkw
f

k �Hkw
t
k

= vk �Hk�wk (5.45)

where vk is the innovation vector, vk � w
o
k�Hkw

f

k
. And from the same discussion presented

before, the minimization of (5.44) produces to the same solution as that found from the

minimum variance approach.

5.2 Properties of the Kalman Filter

5.2.1 Whiteness of the Innovation Process

The behavior, or more adequately the performance of the Kalman �lter is re
ected in the

statistical properties of the so called innovation sequence, where the innovation vector at

time tk is de�ned as

vk � w
o
k � Hkw

f

k
: (5.46)

Adding and subtracting wt
k on the right hand side of this expression, and using the equation

for the observation process (5.3), we can re{write the innovation vector as

vk = vk � Hke
f

k
(5.47)

from where it follows that Efvkg = 0, that is, the innovation sequence has mean zero.

In this section we are interested in investigate the behavior of the cross{, or lagged{

innovation covariance matrix, between times tk and tk�j , de�ned as

�k;k�j � Ef(vk � Efvkg)(vk�j � Efvk�jg)
T
g

= Efvkv
T
k�jg (5.48)

using that the innovation sequence has mean zero. From (5.47) we can write

�k;k�j = Ef[vk � Hke
f

k ][vk�j � Hk�je
f

k�j ]
T
g

= HkEfe
f

k(e
f

k�j)
T
gHT

k�j + Efvk(vk�j)
T
g

�HkEfe
f

k(vk�j)
T
g � Efvk(e

f

k�j)
T
gHT

k�j (5.49)

For the particular case of j = 0, the innovation covariance takes the form:

�k = HkP
f

kH
T
k + Rk (5.50)

where we used (5.4) and (5.16).
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To investigate the case with j � 1, it helps to derive a general expression for the forecast

error e
f

k
. In this regard, let us combine (5.14) and (5.15) to get

e
f

k = 	k�1

h
I� ~Kk�1Hk�1

i
e
f

k�1 + 	k�1
~Kk�1b

o
k�1 � btk�1 (5.51)

for any gain matrix ~Kk�1, and reminding the reader that we are considering the case ` = 1.

Making the transformation k ! k � 1 in the expression above, we have

e
f

k�1 = 	k�2

h
I� ~Kk�2Hk�2

i
e
f

k�2 + 	k�2
~Kk�2b

o
k�2 � btk�2 (5.52)

and substituting this back in (5.51) it follows that

e
f

k = 	k�1

h
I� ~Kk�1Hk�1

i
	k�2

h
I� ~Kk�2Hk�2

i
e
f

k�2

+	k�1

h
I� ~Kk�1Hk�1

i
	k�2

~Kk�2b
o
k�2 + 	k�1

~Kk�1b
o
k�1

�	k�1

h
I� ~Kk�1Hk�1

i
btk�2 � btk�1 : (5.53)

We can continue this iterative procedure by making the transformation k ! k�2 in (5.51),

substitute the result back in the expression above, and so on, so that after j iterations we

get

e
f

k
= �k;k�je

f

k�j
+

k�1X
i=k�j

�k;i+1

h
	i
~Kib

o
i � b

t
i

i
(5.54)

where we de�ne the transition matrix �k;k�j as

�k;k�j � 	k�1

h
I� ~Kk�1Hk�1

i
	k�2

h
I� ~Kk�2Hk�2

i
: : :	k�j

h
I� ~Kk�jHk�j

i
(5.55)

and also �k;k � I.

Substituting the result (5.54) in the general expression for the innovation covariance matrix

(5.49) we have

�k;k�j = Hk�k;k�jP
f

k�jH
T
k�j + Efvk(vk�j)

T
g

� Hk

k�1X
i=k�j

�k;i+1

h
	i
~KiEfb

o
i (vk�j)

T
g � Efbti(vk�j)

T
g

i
HT

k�j

(5.56)

where we notice that, by causality, the term containing Efvk(e
f

k�j)
T g in (5.49) is zero.

Using the fact that the sequence of observation noise is white (5.4), and also that the model

error btk are uncorrelated with the observation error vk0 (5.5), for all k and k
0, it follows

that

�k;k�j = Hk�k;k�jP
f

k�j
HT

k�j � Hk�k;k�j+1	k�j
~Kk�jEfb

o
k�j(vk�j)

T
g

= Hk�k;k�jP
f

k�jH
T
k�j � Hk�k;k�j+1	k�j

~Kk�jRk�j (5.57)
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We can write this expression in a more convenient form, by noticing that

�k;k�j = �k;k�j+1	k�j

h
I� ~Kk�jHk�j

i
(5.58)

and making use of the optimal Kalman gain matrix Kk, that is,

�k;k�j = Hk�k;k�j+1	k�j

h
I� ~Kk�jHk�j

i
P
f

k�jH
T
k�j

�Hk�k;k�j+1	k�j
~Kk�jRk�j

= Hk�k;k�j+1	k�j

h
P
f

k�jH
T
k�j �

~Kk�jHk�jP
f

k�jH
T
k�j �

~Kk�jRk�j

i
= Hk�k;k�j+1	k�j

h
P
f

k�j
HT

k�j �
~Kk�j(Hk�jP

f

k�j
HT

k�j +Rk�j)
i

= Hk�k;k�j+1	k�j

h
Kk�j �

~Kk�j

i �
Hk�jP

f

k�jH
T
k�j +Rk�j

�
= Hk�k;k�j+1	k�j

h
Kk�j �

~Kk�j

i
�k�j (5.59)

where the second to last equality is obtained by noticing that (5.21) can be written as

P
f

k�jH
T
k�j = Kk�j

�
Hk�jP

f

k�jH
T
k�j +Rk�j

�
(5.60)

making k ! k � j. Consequently, for the optimal �lter, when ~Kk�j = Kk�j , we see that

the innovation covariance is zero, that is,

�k;k�j = 0 for all k, and for all j > 0 : (5.61)

In other words, the innovation sequence is white in time when �lter is optimal. This property

stimulates the monitoring of the innovation sequence to determine the performance of a

general sub{optimal �lter.

5.2.2 Orthogonality between the Estimate and the Estimation Error

The estimate produced by the Kalman �lter, wa
k, at any given time tk , and its correspondent

error eak are orthogonal. Mathematically, this is expressed as

Efwa
k(e

a
k)

T
g = 0 ; (5.62)

which is only true in the optimal case, that is, when ~Kk = Kk. A path to demonstrate this

property is indicated in Exercise 5.4.

5.2.3 Observability and Controllability

The concepts of observability and controllability are independent of the Kalman �lter

theory being considered in this lecture. These concepts are related to dynamic systems in

general. However, they are of fundamental importance when studying stability properties

of the Kalman �lter, and for that reason we introduce these concepts in what follows.

Observability is a concept introduced to express our ability to construct the stateswt
0;w

t
1; � � � ;w

t
k

of a system, given a sequence of observations wo
0;w

o
1; � � � ;w

o
k. To exemplify observability
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(cf. Gelb [60]), consider the evolution equation for the true state of the system for the case

in which there is no stochastic forcing and in which the dynamics is independent of time,

that is,

wt
k = 	`wt

k�` (5.63)

represented the n{vector of the state of the system at time tk obtained from the state at

time tk�` . Furthermore, consider a perfect observation process, for which the observation

matrix H is a vector hT of dimension 1� n, and independent of time. In this way, we can

write

w
o
0 = hTwt

0

w
o
1 = hT	wt

0

w
o
2 = hT	2wt

0

...

w
o
n�1 = hT	n�1wt

0

(5.64)

or yet, using vector notation, 0
BBBB@

w
o
0

w
o
1

...

w
o
k�1

1
CCCCA = Zwt

0 (5.65)

Therefore the question of observability reduces to the ability of reconstructing the initial

state of the system by means of the observations wo
0; w

o
1; � � � ; w

o
n�1. Whether we can recov-

ering the initial condition wt
0 of the system from the observations or not, can be assessed

by considering the matrix Z = Zn, of dimension n � n, de�ned as

Zn �

�
h 	Th � � � (	T )n�1h

�T
(5.66)

and whether this matrix is invertible or not. The matrix Zn is invertible if it is of rank n.

We say that a system is observational in a time tk > t0, if it is possible to construct an

initial state wt
0 from observations wo

k in the time interval (t0; tk). The system is said to be

completely observational if the states wt
k can be obtained from all of the observations wo

k.

In the general case, when the matrix H is of dimension m� n, where m is the number of

available observations, the observability matrix Zn is rede�ned as:

Zn �

�
HT 	THT � � � (	T )n�1HT

�T
(5.67)

and it is a matrix of dimension nm � n, which should be of rank n for the system to be

completely observable.

The concept of observability can be made more precise by introducing the so called infor-

mation matrix I,

I(k; k�N) �
kX

i=k�N

	T
i;kH

T
i R

�1

i Hi	i;k (5.68)
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which occurs in several recursive forms in least squares problems (or in the Kalman �lter;

see Jazwinski [84] pp. 205{207). According to Kalman [88] the dynamic system (5.1) and

(5.3) is said to be completely observable if, and only if,

I(k; 0) > 0 (5.69)

for all k > 0. Moreover, the system is said to be uniformly completely observable if there is

an integer N , and positive constants � and �, such that

0 < �I � I(k; k �N) � �I (5.70)

for all k � N . It is interesting to notice that observability depends on the properties of the

dynamics 	k;k�1 and the observation matrixHk , but not explicitly on the observations wo
k.

Analogously, we can introduce the concept of controllability. This concept comes from

the idea of introducing a deterministic forcing term in the evolution equation to drive the

system toward a pre{speci�ed state, within a certain period of time. This subject is, in

itself, the motivation for the development of a theory called optimal control. Analogously

to what is done in estimation theory, in optimal control a performance index [similar to

the cost function J in (5.19)] serves as a measure of the proximity of the solution to the

speci�ed state. The minimization of the performance index determines the optimal forcing

term, in the least squares sense, necessary to drive the state of the system to the speci�ed

state. The problem of linear optimal control is said to be the dual of the linear, estimation

problem, in the sense that results from estimation theory have equivalent counterparts in

control theory. In particular, the concept of observability, brie
y introduced above, is the

dual of the concept of controllability. As a consequence, we can study controllability by

means of the controllability matrix, de�ned as

C(k; k�N) �
kX

i=k�N

	i;kQ
�1

i 	T
i;k (5.71)

which is the dual analogous of the observability matrix. Consequently, we say that the

dynamic system (5.1) and (5.3) is completely controllable if, and only if,

C(k; 0)> 0 (5.72)

for all k. Furthermore, we say that the system is uniformly completely controllable if there

exists an integer N , and positive constants � and � such that

0 < �I � C(k; k�N) � �I (5.73)

for all k � N . More details about this duality can be found in Kalman's original work [87],

as well as in textbooks such as Gelb [60], Bryson & Ho [20], and also in the atmospheric

sciences literature Ghil & Malanotte{Rizzoli [64].

The concepts of observability and controllability mentioned above are fundamental to es-

tablish stability results for the Kalman �lter. In what follows, we summarize these results,

following Dee's summary [44], which is based on the discussion Jazwinski's Section 7.6 [84].

When we inquire about system stability in the context of the Kalman �lter, we are referring

to the stability of the stochastic system described by the analysis equation

wa
k = (I�KkHk)	k;k�1w

a
k�1 + Kkw

o
k (5.74)
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where Kk is a Kalman gain matrix (5.21). The dynamics 	k;k�1 is assumed to be stable,

that is ,

jj	k;0jj � c1 (5.75)

for all k � 0. Here jj:jj is an appropriate matrix norm, such as the spectral norm. In fact,

the homogeneous system corresponding to (5.1) is said to be asymptotically stable if

jj	k;0jj ! 0 (5.76)

for k ! 1. Furthermore, the homogeneous system corresponding to (5.1) is said to be

uniformly asymptotically stable if

jj	k;0jj ! c2 exp(�c3k) (5.77)

for all k � 0.

For this stable dynamics, the following results can be obtained, for the system governed by

(5.74):

1. The analysis error covariance matrix Pa
k is uniformly bounded from above and below:

[I(k; k�N) + C
�1(k; k�N)]�1 � Pa

k � [I�1(k; k�N) + C(k; k�N)]�1 (5.78)

for all k � N .

2. If Pa
0 � 0, the Kalman �lter is uniformly asymptotically stable, that is, there are

constants c4 and c5 such that

jj�k;0jj � c4 exp(�c5k) (5.79)

for all k � 0, where �k;0 is the transition matrix introduced in (5.55).

3. If Pa
k
and Sa

k
are two solutions of the Kalman �lter equations for two initial conditions

Pa
0 � 0 and Sa0 � 0, then

jjPa
k � S

a
kjj � c4 exp(�2c5k)jjP

a
0 � S

a
0jj (5.80)

which means that the error estimates of the Kalman �lter are stable with respect

to the errors of the initial state. In other words, the linear Kalman �lter eventually

| as data is processed in time |\forgets" about the uncertainty in the initial error

covariance.

The notions of observability and controllability were initially introduced for systems gov-

erned by ordinary di�erential equations (see Ghil & Ide [63] for an application of interest

to atmospheric sciences). These concepts can be extended to the case of systems governed

by partial di�erential equations. A series of articles on this subject can be found in the

Stavroulakis [125]. The problem of observability for discrete partial di�erential equations

was investigated by Cohn & Dee [31].
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Table 5.1: Computational requirements of the Kalman �lter (mk = m).

\Brute{force" implementation of the Kalman �lter

Ref. Variable Equation Calculation Flops

F1 w
f
k 	k�1w

a
k�1 	w 2n2 � n

F2 P
f

k 	k�1P
a
k�1	

T
k�1 +Qk�1 P	T 2n3 � n2

	(P	T ) 2n3 � n2

(	P	T ) +Q n
2

F3 Kk P
f
kH

T
k (HkP

f
kH

T
k +Rk)

�1

HP 2n2m � nm

(HP)HT 2nm2
�m

2

(HPHT ) +R m
2

(HPHT +R)�1 2m3

(PHT )(HPHT +R)�1 2nm2
� nm

F4 wa
k w

f
k +Kk(w

o
k �Hkw

f
k ) Hwf 2nm�m

wo
�Hwf

m

K(wo
�Hwf ) 2nm� n

wf + [K(wo
�Hwf )] n

F5 Pa
k (I �KkHk)P

f

k K(HP) 2nm2
�m

2

P�K(HP) n
2

5.3 Computational Aspects of the Kalman Filter

5.3.1 Generalities

We show in Table 5.3.1 the equations involved in the implementation of the Kalman �lter.

Although these equations are used for the case of linear systems, many approximations for

the nonlinear case involve similar equations with equivalent computational cost | some

computational burden is added to nonlinear systems due to the calculation of the Jaco-

bian matrices (see the following lecture). The table displays computational cost measured

in units of 
ops { 
oating point operations (multiplications and additions) | related to

\brute-force" implementation of these equations. By \brute-force" we mean implemen-

tations following the operations in the table neither taking into account storage savings

of certain quantities nor preventing repetitive calculations of other quantities. A detailed

treatment of various implementations of the Kalman �lter equations is given in Mendel

[106], however for atmospheric data assimilation applications the description here should

su�ce. In these applications, many of the matrices in the formulas in Table 5.3.1 are not

explicitly invoked due to their complexity, and are rather treated in operator form.

The following are factors that may be exploited to render computation costs more accept-

able:
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� the symmetry of the error covariance matrices can be used to reduce storage require-

ment.

� the analysis Pa
k and forecast P

f

k error covariance matrices can share the same space

in memory.

� in applications to atmospheric data assimilation, the dynamics 	k is a sparse matrix

due relatively small �nite{di�erence stencils, and only its non{zero elements need to

be stored in memory. As a matter of fact, in this case, the operations corresponding

to the application of 	k to an n{vector is of order n, instead of n2, as indicated in

the table for the general case. Moreover,	 never really exists as a matrix, but rather

as an operator.

The Kalman �lter is subject to computational instabilities due to di�erent possible ways

to program its equations. A simple case is discussed below showing that Joseph's formula

(5.18) for calculating the analysis error covariance matrix is computationally more stable

than the expression (5.22), with respect to errors in calculating the gain matrix Kk (see

next section). Even the ordering of the factors in the multiplication among matrices in the

algorithm is relevant and may be responsible for numerical instability as discussed in details

by Verhaegen & Van Dooren [134].

Assuming that n � m, or else, that the number of degrees of freedom n of the system

is much greater than the number of observations mk = m, at any given time, it is clear

from Table 5.3.1 that equation F2 is responsible for the major part of the computational

cost in the Kalman �lter algorithm. In general, the cost of propagating the analysis error

covariance matrix, to get the forecast error covariance matrix, is of the order of n3; in the

particular case of sparse dynamics, the cost gets reduced to n
2. For problems governed by

partial di�erential equations, as in the case of atmospheric data assimilation, the number

of degrees of freedom n reaches levels as high as 106{107, with great potential for increase

as resolution of atmospheric models increase. This large number of degrees of freedom for

problems in assimilation data assimilation prohibits \brute{force" implementation of the

Kalman �lter, even when the factors for cost reduction mentioned above are taken into

account. Consequently, we are required to develop approximations to equation F2, and in

some cases even to the analysis error covariance update equation F5. A lot of the research

in applying the Kalman �lter to atmospheric data assimilation has been done with relation

to this topic (see Todling & Cohn [129], and references therein).

5.3.2 Sensitivity of the Filter to the Gains

The asymptotic stability concept for the Kalman �lter discussed previously in this lecture

is relatively strong, and not always the conditions for uniform asymptotic stability are

satis�ed. In practice, however, instability in the Kalman �lter algorithm, or in suboptimal

implementations of the algorithm, can be associated to lack of knowledge of model errors,

observation errors, and even to speci�c problems due to numerical implementation of the

algorithm. In this section, we look at more closely to this last aspect of instability, that

is, that due to numerical implementation. We show that certain formulas are in fact more
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prone to numerical errors and can be, sometimes, the cause of eventual divergence of the

�lter.

In order to simplify notation, we momentarily omit the index referring time in the �lter

equations. In this manner the error covariance matrix update equation can be written using

Joseph's formula as

Pa = (I�KH)Pf(I�KH)T + KRKT (5.81)

where the Kalman gain matrix is given by

K = PfHT (HPfHT +R)�1 (5.82)

Alternatively, as we have seen above, the simpler formula for the analysis error covariance

matrix can be obtained by substituting the optimal gain (5.82) in (5.81), that is,

Pa = (I�KH)Pf (5.83)

Numerical implementation of the Kalman �lter generates numerical errors, even when the

optimal �lter is utilized | e.g., due to rando� error. In this regard, we want to investigate

the e�ect in Pa caused by small errors in calculating K numerically. For that, assume

that the gain K undergoes a modi�cation �K after numerically solving (5.82), so that from

(5.83) it follows that,

Pa + �Pa = (I�KH)Pf + �KHPf (5.84)

and therefore, the instantaneous error in Pa is given by

�Pa = �KHPf (5.85)

which is of �rst order in �K.

Instead, using Joseph's formula (5.81) for the modi�ed gain we have

Pa + �Pa
Joe = (I�KH� �KH)Pf(I�KH� �KH)T

+ (K+ �K)R(K+ �K)T

= (I�KH)Pf(I�KH)T + KRKT

� (I�KH)PfHT
�KT

� �KHPf(I�KH)T

+ �KHPfHT
�KT + KR�KT + �KRKT + �KR�KT

= (I�KH)Pf(I�KH)T + KRKT + �K(HPfHT +R)�KT

+ [K(HPfHT +R)�PfHT ]�KT

+ �K[K(HPfHT +R)�PfHT ]T (5.86)

and therefore, using (5.82) and (5.81) it follows that

�Pa
Joe = �K(HPfHT +R)�KT (5.87)

This shows that Joseph's formula is of second order in errors made when calculating the

gain matrix, and therefore it is numerically more stable. Consequently, in many engineering

implementations of the Kalman �lter Joseph's formula is preferably used.
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5.3.3 Serial Processing of Observations

Serial processing of observations was introduced in the literature by Bierman [12], and

discussed in Parrish & Cohn [113] in the context of atmospheric data assimilation. In this

section, we assume for simplicity that all the available observations are uncorrelated at all

times tk. We have in mind the uncorrelatedness not only in time, but also among variables

at a �xed time.

When m observations are available at time tk , to say these observations are uncorrelated

among themselves is to say that the matrix Rk is diagonal, for all k, that is

Rk = diag(�21; :::; �
2
p) (5.88)

where �i, i = 1; 2; :::;m, are the observation error standard deviations. Following the

treatment of Parrish & Cohn [113], let us omit the index k in this section to simplify

notation.

In this case, the observation process in (5.3) can be decomposed as

w
o
j = hTj w

t + b
o
j (5.89)

for j = 1; 2; :::; p, where wo
j is a single scalar observation, the vector hTj is the j{th row of

the observation matrix H, and b
o
j is a random number that satis�es

Ef(boj)
2
g = �

2
j ; (5.90)

for each j.

The assumption that the m observations, available at any given time, are uncorrelated of

each another means that these observations can be processed (or assimilated) as if they

became available at in�nitesimally small time intervals apart. Consequently, we can iter-

ate the equations (5.21), (5.18) and (5.23) over the observations so that we get, for each

observation j:

kj = Pj�1hj(h
T
j Pj�1hj + �

2
j )
�1 (5.91a)

Pj = (I� kjh
T
j )Pj�1 (5.91b)

wj = wj�1 + kj(w
o
j � h

T
j wj) (5.91c)

which resembles the algorithm derived in Section 4.4 for processing a newly available ob-

servation vector with the least squares algorithm. In that case, we have also assumed

uncorrelatedness among observations, which was explicitly seen when writing (4.82).

Since the quantities in parenthesis in (5.91a) and in (5.91c) are scalars, and the vector

Pj�1hj is used many times in di�erent places, we can introduce an auxiliary vector vj
(which should not be confused with the innovation vector introduced in earlier in this

lecture),

vj = Pj�1hj ; (5.92)

so that the observation process gets reduced to the following algorithm: initialize with the

forecast error covariance matrix and the forecast state vector,

P0 = Pf
; (5.93)
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and

w0 = wf ; (5.94)

respectively, and iterate the following set of equations:

�j = hTj vj + �
2
j ; (5.95a)

kj =
1

�j

vj ; (5.95b)

�Pj = Pj�1 � kjv
T
j ; (5.95c)

�vj = �Pjhj ; (5.95d)

Pj = �Pj � �vjk
T
j + �

2
jkjk

T
j ; (5.95e)

�j = w
o
j � h

T
j wj�1 ; (5.95f)

wj = wj�1 + �jkj ; (5.95g)

for each j = 1; 2; :::;m, so that at the last iteration we have

Pm = Pa
; (5.96)

for the analysis error covariance matrix, and

wm = wa
; (5.97)

for the analysis state vector. The computational advantage of this algorithm is that it avoids

the need to invert the m � m innovation error covariance matrix in (5.21), to calculate

Kalman gain matrix Kk . In the serial processing procedure, the inversion of this matrix

is replaced by the inversion of the m scalar quantities in (5.95a). The demonstration of

consistence between the serial algorithm above and the standard algorithm can be done

by following an analogous procedure to that of Section 4.4, to process a newly available

observation with the least squares algorithm.

The use of Joseph's formula and the consequent use of �Pj may suggest the need to de�ne

an auxiliary matrix of the size of the forecast error covariance matrix. However, this is only

apparent, due to the notation used in writing the algorithm above. When programming

these equations, the matrix Pj is the only one required, that is, matrices �Pj and Pj can

share the same storage space. Also notice that when the elements of the state vector are

directly observed, that is, when there are no linear combinations between the elements of

the state vector in order to produce the observations, the elements of the vector hj are all

zeros except for one of them, which is in fact the unity. Consequently, the operations in

(5.92) and (5.95d) are equivalent to extracting a column of the matrices Pj .

One disadvantage of the serial processing is that we do not have access to the complete gain

matrixK, but rather only to the arrays kj . If we are only interested in the �nal result of the

analysis, there is no need to obtain K explicitly; however, if we are particularly interested

in investigating the in
uence of a certain observation on to distinct elements of the state

vector (e.g., Ghil et al. [66]), it is necessary to calculate the complete gain matrix. The

simplest way to recover the gain matrix, when using serial processing, is to do so after having

obtained the analysis error covariance matrix by making use of the alternative expression

for the gain matrix,

Kk = Pa
kH

T
kR

�1

k ; (5.98)

95



where, in writing the expression above we restored the time subscript k, to emphasize the

fact that this should be done at the end of each analysis time tk.

Exercises

1. Show that (5.18) reduces to (5.22) for the optimal Kalman �lter gain.

2. (Gelb [60], Problem 4.8). Consider the following continuous{time dynamical system,

and corresponding continuous{time observation process:

_x = F(t)x + G(t)w

z = H(t)x + v

where the noises w e v are considered N (0;Q(t)) andN (0;R(t)), respectively, and are

also decorrelated. Assume that the state estimate evolves according to the following

expression:
_̂x = ~Lx̂ + ~Kz

where the matrices ~L and ~K are to be determined following estimation and optimiza-

tion arguments. Imposing the restriction that the estimate be unbiased, show that
~L = F � ~KH, and obtain the following simpli�ed form for the estimate evolution

equation:
_̂x = F(t)x̂ + ~K(z�Hx̂)

Next, show that the error estimate covariance matrix evolves according to the following

expression:

_P = (F� ~KH)P + P(F� ~KH)T + GQGT + ~KR ~KT ;

notice that this is a general expression, in the sense that it is valid for any matrix
~K. This expression is continuum equivalent of the Joseph formula (5.18) for the

discrete{time case. As a matter of fact, we can show through a limiting procedure

equivalent to that of Section 3.1.3, that the expression for the discrete case reduces

to the expression above as time approaches zero (e.g., see Gelb [60]). De�ning a cost

function as a measure of the ratio of error change, that is, J = Tr( _P), show that its

minimization leads to the following expression for the optimal gain matrix ~K = K:

K = PHTR�1

Using this formula for K, show that the evolution equation for the error covariance is

transformed to
_P = FP + PFT

� PHTR�1HP + GQGT
;

which is known as the Riccati equation (e.g., Bittanti et al. [13])

3. (Gelb [60], Problem 4.11). Consider the following dynamical system and measurement

processes:

_x = ax + w

z = bx + v
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where the noises w and v are white in time, and normal, with mean zero and variances

q = const: and r = const:, respectively, for constants a and b. Assuming the initial

error variance is p0, show that the optimal �lter error variance is given by

p(t) =
(ap0 + q) sinh�t + �p0 cosh �t�
b2

r
p0 � a

�
sinh �t + � cosh �t

where

� = a

s
1 +

b
2
q

a
2
r

Furthermore, show that the steady{state (t!1) variance is given by

p1 =
ar

b
2
(1 +

�

a

)

which is independent of the initial variance p0. Obtain p1 for a perfect model, that

is, when q = 0. Give an interpretation to this result.

4. Show that the Kalman �lter estimate wa
k is orthogonal to its error e

a
k , for all k. Using

�nite induction, start by showing that

Efwa
1(e

a
1)

T
g = 0

and that

Efwa
2(e

a
2)

T
g = 0

Then, assume that Efwa
k(e

a
k)

Tg = 0 is true, and show that

Efwa
k+1(e

a
k+1)

T
g = 0

is satis�ed.

5. (Ghil et al. [66]) Consider the Kalman �lter applied to the scalar, discrete{time

system:

xk = axk�1 + wk

zk = xk + vk

where the noises wk and vk are white, normal with mean zero and variances q = const:

and r = const:, respectively. In this case, the Kalman �lter reduces to the following

system of equations:

p

f

k = Ap
a
k�` + Bq

p
a
k =

(
rp

f

k=(p
f

k + r) ; para k = j`, j = 1; 2; � � �

p

f

k de outro modo

where

A = a
2`
; B =

P`�1
m=1

a
2m

De�ning sj = p
a
j`, for j = 0; 1; ; 2; � � � show that

sj =
(Asj�1 + Bq)r

Asj�1 +Bq + r
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Consider now the perfect model case, that is, when q = 0, with initial error variance

p0 = s0. Show that for jaj 6= 1,

sj =
A
j(A� 1)s0r

A(Aj � 1)s0 + (A� 1)r

and that for jaj = 1,

sj =
s0r

js0 + r

Finally, show that when j !1 we have

sj ! 0 para jaj � 1 ,

sj ! (1� 1

A
)r ; para jaj > 1 :

Interpret the asymptotic results obtained above.

6. (Chui & Chen [25], Problema 2.14) Some typical engineering applications are classi�ed

under the designation ARMA (autoregressive moving{average), and can be written

as:

vk =
NX
i=1

Bivk�i +
MX
i=0

Aiuk�i ;

where the matrices B1; : : : ;BN are n� n dimensional, and the matrices A0; : : : ;AM ,

are n�q, and are independent of the time variable k. Considering M � N , show that

this process can be written in the following vector form:

xk+1 = Axk + Buk

vk = Cxk + Duk

for a vector xk of dimension nN , with x0 = 0, and where

A =

0
BBBBBB@

B1 I 0 � � � 0

B2 0 I � � � 0
...

...
...

BN�1 0 0 � � � I

BN 0 0 � � � 0

1
CCCCCCA

; BT =

0
BBBBBBBBBBB@

A1 +B1A0

A2 +B2A0

...

AM +BMA0

BM+1A0

...

BNA0

1
CCCCCCCCCCCA

;

C = [I 0 � � � 0] e D = A0 :

7. Multiple choice. (from Bryson & Ho [20]) Consider the scalar estimation problem

xi+1 = xi + wi

zi = xi + vi

where wi � N (0; q) and white; vi � N (0; 1) and white; wi and vj are uncorrelated for

all i and j; and there is no initial knowledge of x0. If 0 < q < 1, then the optimal

estimate x̂i is given by
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(a) x̂i =
1

i

Pi
j=1 zj

(b) x̂i = zi

(c) x̂i+1 = x̂i + ki(zi+1 � x̂i), 1=(i+ 1) < ki < 1

(d) x̂i+1 = x̂i + ki(zi+1 � x̂i), 1 < ki <1

Justify your answer.

8. Multiple choice. (from Bryson & Ho [20]) A static estimate of x is made from a

measurement z:

z = Hx+ v

with v � N (�v;R) and x � N (�x;P). The estimate is

x̂ = �x+K(z�H�x)

where K is some constant matrix. The estimate is

(a) unbiased

(b) biased with a bias of (KH�x)

(c) biased with a bias of (K�v)

(d) biased with a bias of [K(�v�H�x)]

Justify your answer.

9. Computer Assignment. (Partially based on Lewis (1986) 1, Example 2.5-2.) Computer

Assignment. Consider the following linear dynamical process2

xk �

 
x1(k)

x2(k)

!
=

 
1 T

�!
2
T 1� 2�T

! 
x1(k � 1)

x2(k � 1)

!
+

 
w1(k � 1)

w2(k � 1)

!

and the following observation process

z(k) =
�
1 0

� 
x1(k)

x2(k)

!
+ v(k)

for w(k) � N (0;Q), v(k) � N (0; r=T ) and both uncorrelated from each other at all

times. Here the (co)variance Q is given by

Q =

 
0 0

0 T

!

For the choice of parameters: ! = 0, � = �0:1,r = 0:02, and T = 0:02, address the

following questions:

(a) Is the dynamical system stable or unstable?

1Lewis, F.L., 1986: Optimal Estimation with an Introduction to Stochastic Control Theory. John Wiley
& Sons, 376 pp.

2This dynamical system arises from an Euler discretization of \damped" harmonic oscillator given by

�y(t) + 2� _y + !
2 = 0

where stochastic forcing is applied after discretization.
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(b) Using Matlab, simulate the stochastic dynamical system from k = 0 to k = 500,

starting from x0 =

 
0:1

0:2

!
. Plot the state xk against k.

(c) Using the linear Kalman �lter, simulate the evolution of the error (co)variance

matrix, starting from the initial condition Pa
0 = I, where I is the 2� 2 identity

matrix. Plot the analysis error variance, in both variables, for the same time

interval as in the previous item.

(d) Is the �lter stable or unstable? Explain.

(e) Are your answers to questions (a) and (d) incompatible? Explain.

(f) Plot the true state evolution together with the analysis estimate3 for both vari-

ables and for the time interval in item (b).

(g) Suboptimal �lters: Let us now study the behavior of two suboptimal �lters. Be-

fore starting, however, replace the analysis error (co)variance equation in your

Matlab program by Joseph formula (if you are now already using it). We men-

tioned in this lecture that Joseph formula is valid for any gain matrix ~Kk , thus

we can use it to evaluate the performance of suboptimal �lters.

i. Assuming the calculation of the forecast error (co)variance is computation-

ally too costly for the present problem, we want to construct a suboptimal

�lter that somehow replaces the calculation of P
f

k
by a simpler equation. Let

us think on replacing the equation for P
f

k by the simple expression P
f

k = I.

With this choice of forecast error (co)variance, it is simple to see that the

gain matrix becomes

~Kk = HT (HHT + r=T )�1

= 1

1+r=T
HT

where we used explicitly thatH = (1 0) for the system under consideration.

Keeping the equation for P
f

k , in your Matlab code as dictated by the Kalman

�lter, replace the expression for the optimal gain by the one given above.

This turns the state estimate in a suboptimal estimate. Also, since you have

kept the original expression for the forecast error (co)variance evolution,

and your are using Joseph formula for the analysis error (co)variance, these

two quantities provide now �lter performance information due to suboptimal

choices of gains. With the \approximate" gain matrix above, is the resulting

�lter stable or unstable? Explain. If this is not a successful choice of gain

matrix, can you explain why that is?

ii. Let us know build another suboptimal �lter that replaces the gain by the

asymptotic gain obtained from the optimal run in item (b). To obtain the

optimal asymptotic gain, you need to run the experiment in item (b) again,

output the gain matrix at the last time step from that run, and use it as

a suboptimal choice for the gain matrix in this item. You should actually

3Remember that your initial estimate should be sampled from the initial state where the initial error is
N (0;Pa

0), that is,

x
a

0 = x0 + chol(Pa

0 ) � randn(:)

writing is a very symbolic manner.
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make sure that the gain has asymptote by looking at its value for a few time

steps before the last time step, and verifying that these values are indeed

the same. Now run a similar experiment than that of the previous item, but

using the asymptotic gain for the suboptimal gains at all time steps. Is the

resulting �lter stable or unstable? (Note: This choice of gain corresponds to

using the so called Wiener �lter.)
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