
Chapter 4

Introduction to Estimation Theory

4.1 Concepts of Probabilistic Estimation

The problem we are interest in this lecture is that of estimating the value of an n{

dimensional vector of parameters w, of a given system, on the basis of p observations

taken on these parameters, and stacked in a p dimensional observation vector z. We refer

to ŵ as the estimate of the vector of parameters w under investigation, and we refer to

the quantity ~w = ŵ � w as the estimation error. Based on the statistical formulation

of the problem, we assume that the observational process is imperfect, and therefore the

observations can be considered realizations of a random variable. Analogously, the vector

of parameters w is seen as a quantity belonging to realizations of another random vector.

4.1.1 Bayesian Approach

In Bayesian estimation theory we introduce a functional J which corresponds to a measure

of the \risk" involved in the estimate obtained for the parameter w. That is, we de�ne

J (ŵ) � EfJ(~w)g

=

Z
1

�1

J(~w) pw(w) dw

=

Z
1

�1

Z
1

�1

J(~w) pwz(w; z) dz dw (4.1)

where pw(w) is the marginal probability density of w, pwz(w; z) is the joint probability

density of the random variables w and z, and the function J(~w) is the one that provides

the risk evaluation criteria, many times referred to as the cost function. The problem of

determining an estimate ŵ gets reduced to that of minimizing the risk, or expected cost

value, by means of an appropriate choice of the functional J(~w). We refer to the value of

ŵ providing the minimum as the optimal estimate.

In general, the optimal estimate depends on the cost function being employed. Example of
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two common cost functions are the quadratic cost function,

J = jj~wjj2E = ~wTE~w ; (4.2)

where the n � n matrix E is assumed to be non{negative and symmetric; and the uniform

cost function,

J =

(
0 ; jj~wjj < �

1=2� ; jj~wjj � �
: (4.3)

However, for a large class of estimation problems, the resulting estimate is independent of

the choice of the cost function.

A desirable property of an estimate is that it be unbiased, that is, that its ensemble average

equals the ensemble average of the variable of interest. This is expressed mathematically as

Efŵg = Efwg (4.4)

or in other words, the estimation error is zero: Ef~wg = 0. Estimates satisfying the equality

above are said to be unconditionally unbiased, which is more general than being a condi-

tionally unbiased estimate, that is obeying

Efŵjwg = w : (4.5)

4.1.2 Minimum Variance Estimation

The minimum variance estimate, denoted ŵMV, minimizes the risk function with the cost

function given by (4.2). Therefore, the risk function to be minimized is written explicitly

as

JMV(ŵ) =
Z
1

�1

Z
1

�1

(w � ŵ)TE(w� ŵ) pwz(w; z) dz dw (4.6)

which, using the de�nition of conditional probability distribution (1.77), can also be written

as

JMV(ŵ) =
Z
1

�1

�Z
1

�1

(w � ŵ)TE(w� ŵ) pwjz(wjz) dw
�
pz(z) dz : (4.7)

The outer integral does not involve ŵ, and since the marginal probability density pz(z) is

always positive, we see that to search for the minimum of JMV is equivalent to minimizing the

integral in the kernel of the expression above. The kernel can be identi�ed as an expression

for the conditional Bayes risk, that is,

JMV(ŵjz) �
Z
1

�1

(w � ŵ)TE(w� ŵ) pwjz(wjz) dw (4.8)

which is what we want to minimize with respect to ŵ.

Using the de�nition of di�erentiation of a scalar function f = f(x) of an n{dimensional

vector x, that is,

@f(x)

@x
�

0
BBBBB@

@f(x)
@x1
@f(x)
@x2
...

@f(x)
@xn

1
CCCCCA (4.9)
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we can show that for a constant n{vector a we have

@aTx

@x
=

@xTa

@x
= a : (4.10)

Moreover, for an n� n symmetric matrix A we have

@xTAx

@x
= 2Ax : (4.11)

Applying these rules of di�erentiation to the minimization of JMV(ŵjz) it follows that

0 =
@JMV(ŵjz)

@ŵ

����
ŵ=ŵMV

= � 2E

Z
1

�1

(w� ŵ) pwjz(wjz) dw
����
ŵ=ŵMV

(4.12)

and for any E,

ŵMV

Z
1

�1

pwjz(wjz) dw =

Z
1

�1

wpwjz(wjz) dw (4.13)

since the integral of pwjz is unity (because p is a probability density), hence

ŵMV(z) =

Z
1

�1

wpwjz(wjz) dw

= Efwjzg (4.14)

This estimate has the desirable property of being unbiased. This can be shown simply as

Ef~wg = Efw� ŵMVg
= Efw� Efwjzgg
= Efwg � EfEfwjzgg
= Efwg � Efwg
= 0 (4.15)

where the fourth equality follows from the chain rule for expectation operators in (1.84).

That the solution (4.14) is in fact a minimum of JMV(ŵjz) can be seen by calculating the

second derivative of this quantity with respect to ŵ, that is,

@
2JMV(ŵjz)

@ŵ2
= 2E (4.16)

and since E is a non-negative matrix, the second derivative is non-negative, therefore the

solution represents a minimum. Notice the extremely important fact that the estimate with

minimum error variance (4.14) corresponds to the conditional mean. Substitution of (4.14)

in expression (4.6) provides the Bayes risk with minimum error variance.

4.1.3 Maximum a posteriori Probability Estimation

Another estimator is de�ned through the risk function for the uniform cost function (4.3),

and can be written explicitly as

JU(ŵ) =

Z
1

�1

�Z
1

�1

J(~w) pwjz(wjz) dw
�
pz(z) dz
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=

Z
1

�1

(
1

2�

Z
ŵ��

�1

pwjz(wjz) dw +
1

2�

Z
1

ŵ+�
pwjz(wjz) dw

)
pz(z) dz

(4.17)

where, some caution is needed in reading the integrals inside the brackets: these are multiple

integrals and the notation ŵ � � should be interpreted as ŵ1 � �, ŵ2 � �, and so on, for

each one of the n components of the vector ŵ. Since pwjz is a probability density function

its integral over the whole Rn domain is unity, consequently the Bayes risk function can be

written as

JU(ŵ) =

Z
1

�1

1

2�

(
1 �

Z
ŵ+�

ŵ��
pwjz(wjz) dw

)
pz(z) dz : (4.18)

For the problem of minimizing JU with respect to ŵ, the �rst term gives no relevant

contribution, thus we can think of minimizing

JU(ŵ) � �(1=2�)
Z
1

�1

(Z
ŵ+�

ŵ��
pwjz(wjz) dw

)
pz(z) dz : (4.19)

or yet, we can minimize the conditional Bayes risk

JU(ŵjz) � �(1=2�)
Z
ŵ+�

ŵ��
pwjz(wjz) dw (4.20)

since pz(z) is positive. As � � 0 approaches 0, the mean value theorem for integrals1 can

be employed to produce

JU (ŵjz) = � pwjz(ŵjz) (4.21)

which can also be obtained by noticing that as � approaches zero the cost function J(~w)

turns into a common representation for the negative of the delta function, in an n{dimensional

space, that is, the cost function becomes

J(~w)! �
nY
i=1

�(wi � ŵi) : (4.22)

Minimization of JU(ŵjz) is equivalent to maximization of the conditional probability den-

sity function pwjz(ŵjz). The value ŵ = ŵMAP that maximizes this quantity is known as the

maximum a posteriori probability (MAP) estimate, and is determined by means of

@pwjz(ŵjz)
@ŵ

�����
ŵ=ŵMAP

= 0 ; (4.23)

which is the same as
@pwjz(wjz)

@w

�����
w=ŵMAP

= 0 ; (4.24)

1The mean value theorem for integrals (e.g., Butkov [22]) can be stated as:

(1=2�)

Z
�

��

f(x)dx = (1=2�)(2�)f(�) = f(�)

for �� � � � �.
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since that the variables w and ŵ play the role of \dummy" derivation variables. Knowing

that pwjz is really a function of w, we prefer to use (4.24) rather than (4.23) to avoid

confusion. The designation a posteriori refers to the fact that the estimate is obtained after

the observations have been collected, that is, probability of w given z. An estimate of

this type is briey described in (1.29), consequently we can identify maximum a posteriori

probability estimation with mode estimation.

To maximize the probability density above is also equivalent to maximize its natural loga-

rithm, ln pwjz(wjz), with respect to w. Using Bayes rule (1.79) we can write

ln pwjz(wjz) = ln[pzjw(zjw)pw(w)] � ln pz(z) (4.25)

and since pz(z) does not depend on w the maximum a posteriori probability estimate can

be obtained by solving either

@ ln[pzjw(zjw)pw(w)]
@w

�����
w=ŵMAP

= 0 ; (4.26)

or
@pzjw(zjw)pw(w)

@w

�����
w=ŵMAP

= 0 : (4.27)

In general, the unbiasedness of the estimate is not necessarily guaranteed in this case.

4.1.4 Maximum Likelihood Estimation

In maximum a posteriori probability estimation it is necessary to know the probability

density of the process of interest, that is pw(w). In maximum likelihood (ML) estimation,

we assume this a priori information is unknown. Assuming for the moment that the a priori

probability distribution is Gaussian, with mean �w and covariance Pw, we have

pw(w) =
1

(2�)n=2jPwj1=2
exp

�
�
1

2
(w� �w)

TP�1w (w� �w)
�

(4.28)

or yet

ln pw(w) = � ln[(2�)n=2jPwj1=2]�
1

2

h
(w � �w)

TP�1w (w � �w)
i
: (4.29)

Hence,
@ ln pw(w)

@w
= �P�1

w
(w � �w) (4.30)

which indicates that lack of information about the random variable w implies in�nite vari-

ance, Pw !1, or yet P�1
w
! 0. Thus, without a priori knowledge on w we have

@ ln pw(w)

@w
= 0 : (4.31)

This is also assumed to be the case even when the probability distribution of w is not

Gaussian.
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From (4.24) and (4.25), the maximum likelihood estimate of w can be obtained by

0 =

"
@ ln pzjw(zjw)

@w
+

@ ln pw(w)

@w

#�����
w=ŵMAP

=
@ ln pzjw(zjw)

@w

�����
w=ŵML

; (4.32)

or equivalently,
@pzjw(zjw)

@w

�����
w=ŵML

= 0 : (4.33)

The estimate ŵML is sometimes referred to as the most likely estimate. However, because

of the assumptions used in obtaining (4.33), this estimate is only reliable under certain

conditions (see Jazwinski [84], p. 157). Just as in the case of the MAP estimate, the ML

estimate is also a mode estimation, in analogy to (1.29). When we choose to refer to mode

estimation, we should always make explicit which conditional probability is being maximized

to avoid confusion, this de�nes whether we are performing MAP or ML estimation. As in

MAP estimation, the estimate from ML is not guaranteed to be unbiased.

4.2 Example: Estimation of a Constant Vector

In this section we exemplify the problem of estimation by treating the case of estimating

a constant (time independent) vector w by means of an observational process corrupted by

noise, represented by the vector v. We assume that w and v are independent and Gaussian

distributed: w � N (�;P), and v � N (0;R). Moreover, the observational process is taken

to be a linear transformation

z = Hw + v (4.34)

where w is an n{vector, z and v are m{vectors, andH is an m�n matrix, referred to as the

observation matrix which accounts, for example, for linear combinations among elements

of the vector w. To obtain an estimate based on the methods described in the previous

section, we investigate the probability densities of the random variables involved in the

observational process.

For the minimum variance estimate we need to determined the a posteriori probability

density pwjz(wjz), so that we can solve the integral in (4.14). From Bayes rule we have

pwjz(wjz) =
pzjw(zjw)pw(w)

pz(z)
(4.35)

and consequently we need to determine each one of the probability densities in this expres-

sion.

Since w is Gaussian, we can readily write

pw(w) =
1

(2�)n=2jPj1=2
exp

�
�
1

2
(w� �)TP�1(w� �)

�
: (4.36)

Linear transformations of Gaussian distributed variables result in Gaussian distributed vari-

ables (e.g., Sage & Melsa [121], pp. 71{72; see also Exercise 4, here). Therefore, the
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probability distribution for the observations is given by

pz(z) =
1

(2�)m=2jPzj1=2
exp

�
�
1

2
(z� �z)

TP�1z (z� �z)
�

(4.37)

where �z and Pz correspond to the mean and covariance of the random variable z, respec-

tively. These quantities can be determined by applying the ensemble average operator to

(4.34), and using the de�nition of covariance. Thus,

�z = EfHwg + Efvg = H� (4.38)

and also,

Pz = Ef(z� �z)(z� �z)
Tg

= Ef [(Hw+ v)�H�)] [(Hw+ v)�H�)]T g
= Ef [(Hw�H�)� v] [(Hw�H�)� v]Tg
= HEf(w� �)(w� �)TgHT + EfvvTg

+HEf(w � �)vTg + Efv(w� �)TgHT
: (4.39)

Noticing that w and v are independent EfwvTg = 0, and that v has zero mean, it follows

that

Pz = HPHT + R (4.40)

and consequently, the probability distribution of z becomes

pz(z) =
1

(2�)m=2j(HPHT + R)j1=2

� exp

�
�
1

2
(z�H�)T (HPHT + R)�1(z�H�)

�
: (4.41)

It remains for us to determine the conditional probability density pzjw(zjw) explicitly. This
distribution is also Gaussian (e.g., Sage & Melsa [121] pp. 73{74), and can be written as

pzjw(zjw) =
1

(2�)m=2jPzjwj1=2
exp

�
�
1

2
(z� �zjw)

TP�1
zjw

(z� �zjw)
�

(4.42)

Analogously to what we have just done to determine pz(z), we have

�zjw = EfHwjwg + Efvjwg = Hw (4.43)

and

Pzjw = Ef(z� �zjw)(z� �zjw)
T jwg

= Ef [(Hw+ v)�Hw)] [(Hw+ v)�Hw)]T jwg
= EfvvT jwg
= EfvvTg
= R : (4.44)

Therefore,

pzjw(zjw) =
1

(2�)m=2jRj1=2
exp

�
�
1

2
(z�Hw)TR�1(z�Hw)

�
(4.45)
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which is the conditional probability of z given w.

Combining the results (4.36), (4.41), and (4.45) in Bayes rule (4.35) it follows that the a

posteriori probability distribution we are interested in takes the form

pwjz(wjz) =
jHPHT +Rj1=2

(2�)n=2jPj1=2jRj1=2
exp[�

1

2
J ] (4.46)

where J is de�ned as,

J(w) � (z�Hw)TR�1(z�Hw) + (w� �)TP�1(w� �)
� (z�H�)T (HPHT +R)�1(z�H�) (4.47)

This quantity J can also be written in the following more compact form:

J(w) = (w� ŵ)TP�1
~w
(w� ŵ) (4.48)

where P�1
~w

is given by

P�1
~w

= P�1 +HTR�1H ; (4.49)

the vector ŵ is given by

ŵ = P~w(H
TR�1z +P�1�) (4.50)

and the reason for using the subscript ~w for the matrix P~w, indicating a relationship with

the estimation error, will soon become clear.

According to (4.14), the minimum variance estimate is given by the conditional mean of

the a posteriori probability density, that is,

ŵMV =

Z
1

�1

wpwjz(wjz) dw = ŵ (4.51)

where the integration can be performed using the approach of moments calculation of the

Gaussian distribution (e.g., Maybeck [101]; see also Exercise 3, here).

The maximum a posteriori probability estimate (4.24) is the one that maximizes pwjz(wjz)
in (4.46), and is easily identi�ed to be

ŵMAP = ŵ : (4.52)

Thus we see that the minimum variance estimate coincides with the maximum a posteriori

probability density estimate.

Let us now return to the reason for using the subscript ~w in P~w. For that, remember that

we de�ned the estimation error ~w as the di�erence between the estimate and the actual

value taken by the variable of interest, that is,

~w � ŵ � w : (4.53)

We want to show that P~w is indeed the estimate error covariance matrix. To verify this,

let us show �rst that �~w = 0, that is, that the ensemble mean error estimate is zero for
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the minimum variance and MAP estimates. In other words, we want to show that these

estimates are unbiased. Using (4.50) we have

�~w = Ef(ŵ�w)g
= P~w(H

TR�1Efzg+P�1�)� �
= P~w(H

TR�1H+P�1)�� � (4.54)

where we replaced z from (4.34), and we recall that v has zero mean. Therefore, using the

de�nition of P~w in (4.49), it follows that �~w = 0. Given what we know from (4.15), this

result comes as no surprise in the case of the minimum variance estimate (4.51); in case of

the MAP estimate this proves that (4.52) does provide an unbiased estimate.

To show that P~w is the error covariance matrix of the estimate, we observe that ~w can be

decomposed as

w � ŵ = w � P~wH
TR�1Hw � P~wH

TR�1v � P~wP
�1
�

= w � P~w(P
�1
~w
� P�1)w � P~wH

TR�1v � P~wP
�1
�

= P~wP
�1(w � �) � P~wH

TR�1v : (4.55)

Therefore,

varf~wg = covf~w; ~wg = Ef(ŵ�w)(ŵ�w)Tg
= P~wP

�1Ef(w � �)(w� �)TgP�1P~w

+P~wH
TR�1EfvvTgR�1HP~w (4.56)

where the cross{terms give no contribution since w and v are independent, and because v

has zero mean. Using the de�nition of P it follows that

varf~wg = P~wP
�1P~w + P~wH

TR�1HP~w

= P~w(P
�1 + HTR�1H)P~w

= P~w (4.57)

where (4.49) was used. This shows that P~w de�ned in (4.49) is indeed the estimation error

covariance matrix, thus justifying its subscript ~w. Moreover, it is simple to see that

jP~wj = jHP�1HT +RjjPjjRj (4.58)

and therefore (4.46) can be written as

pwjz(wjz) =
1

(2�)n=2jP~wj1=2
exp[�

1

2
(w� ŵ)TP�1

~w
(w� ŵ)] (4.59)

justifying the rewriting of J from (4.47) to (4.48).

It is now left for us to determine the maximum likelihood estimate (4.33). This can be done

by maximizing the probability density pzjw(zjw) in (4.45). Hence,

0 =
@pzjw(zjw)

@w

�����
w=ŵML

= HTR�1(z�HŵML) (4.60)
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that is,

ŵML = (HTR�1H)�1HTR�1z (4.61)

which is, in principle, distinct from the estimates obtained above, following the minimum

variance and maximum a posteriori probability estimation approaches. Remembering now

that in maximum likelihood estimation we assume lack of statistical information regarding

the process w, and observing that this means P�1 = 0, we see from (4.50) and (4.49) that,

in this case,

ŵMVjP�1=0 = ŵMAPjP�1=0 = (HTR�1H)�1HTR�1z = ŵML (4.62)

and therefore all three estimation approaches produce the same result.

Applying the average operator to (4.61) we have

EfŵMLg = (HTR�1H)�1HTR�1Efzg
= (HTR�1H)�1HTR�1(HEfwg + Efvg)
= (HTR�1H)�1HTR�1HEfwg
= Efwg (4.63)

where we used the fact that v has mean zero. This shows that the ML estimate is also

unbiased.

It is simple to show that the maximum likelihood estimate error covariance is given by

varf~wMLg = (HTR�1H)�1 (4.64)

which is always greater than the error covariance obtained with the minimum variance

estimation approach. This makes sense since the minimum variance estimate is that corre-

sponding to the minimum of the Bayes risk.

Notice that all estimates above result in a linear combination of the observations. Moreover,

although in this example all three estimation procedures studied above provide the same

estimate this is not always the case. An example in which these estimates do not coincide

is given in Exercise 2.

Another remark can be made by noticing that in the maximum a posteriori probability

estimation context the denominator in (4.35) is not relevant for the maximization of the a

posteriori probability distribution, as indicated in equations (4.26) and (4.27). This implies

that we can derive the result for in (4.52) by minimizing the part of the functional J in

(4.47) corresponding only to the probability density functions in the numerator of (4.35).

That is, we can de�ne the functional corresponding to these probability densities as

JMAP(w) � (z�Hw)TR�1(z�Hw) + (w � �)TP�1(w � �) (4.65)

and its minimization can be shown to produces the same result as in (4.50) with error

variance as in (4.49) | see Exercise 3. Analogously, we can de�ne a cost function related

to the a priori probability distribution associated with the maximum likelihood estimate,

that is,

JML(w) � (z�Hw)TR�1(z�Hw) : (4.66)

The minimization of JML gives the estimate in (4.61) with error variance (4.64).
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4.3 Least Squares Estimation

All of the estimation methods seen so far, i.e., minimum variance, maximum a posteriori

probability, and maximum likelihood, require statistical knowledge of part or all the random

variables in question. However, when going from minimum variance and MAP to ML we

relaxed the statistical assumptions by considering we knew nothing about the statistics of

the variable(s) of interest (w, in that case). Relaxing even further the statistical assump-

tions for the estimation problem takes us in to the situation where we have no statistical

information about any of the variables involved in problem. In this extreme case, estimation

reduces to the method of �nding the least squares �t among the observations.

Let us consider again, as an example, the observational process in the previous section for

an n{vector constant w. Let us assume further that several observations are taken about

the variable of interest, and that the i{th observation can be written as

zi = Hiw + vi (4.67)

where zi, Hi and vi represent an mi{observation vector, a linear transformation matrix

mi � n and a mi{noise vector, respectively. It is important to recognize now that we are

assuming we do not know the statistics of the noise vi, and also that due to lack of statistical

information we are not interpreting w as a random vector.

By collecting the result of k experiments in a long vector, we can write the expression above

in the following compact form:

~zk = ~Hkw + ~vk (4.68)

where the ~mk{vector ~zk is de�ned as:

~zk � [zT1 z
T
2 � � � z

T
k ]

T (4.69)

for ~mk =
Pk

i=1mi, and where

~vk � [vT1 v
T
2 � � � v

T
k ]

T (4.70)

and the matrix ~Hk, of dimension ~mk � n, is de�ned as

~Hk � [HT
1 H

T
2 � � � H

T
k ]

T
: (4.71)

The problem we want to consider is that of �nding an estimate ŵk which minimizes the

quadratic function J ,

J (ŵk) =
1

2
(~zk � ~Hkŵk)

T ~O�1
k (~zk � ~Hkŵk) (4.72)

which measures the distance between the observations and the estimate. The value that

minimizes this function is called the least squares estimate and is denoted by ŵLS

k . The pos-

itive de�nite and symmetric matrix ~O�1
k represents weights attributed to each experiment,

and convey a certain degree of con�dence regarding the experiment in question.

The estimator function J is deterministic, therefore the problem of minimizing J is a

common optimization problem, where the solution ŵLS

k can be determined by means solving,

@J
@ŵk

����
ŵ
k
=ŵLS

k

= 0 : (4.73)

69



Then, the di�erentiation of (4.72) yields

~HT
k
~O�1
k (zk � ~Hkŵ

LS

k ) = 0 (4.74)

from where it follows that

ŵLS

k = Pk
~HT
k
~O�1
k zk ; (4.75)

which is the estimate for the value ofw. For convenience we de�ne a matrix Pk of dimension

n� n as

Pk � (~HT
k
~O�1
k
~Hk)

�1
; (4.76)

and assume that the inverse exists. The matrix P�1k is sometimes referred to as the Gram

matrix. A comparison with the estimate provided by the ML (4.61) method shows certain

resemblance, however, since R and Ok are not related in any way, this resemblance is purely

formal.

Suppose now that an additional experiment was made and it produced a new observation

zk+1:

zk+1 = Hk+1w + vk+1: (4.77)

Then, by means of the notation introduced above, we can write

~zk+1 = ~Hk+1w + ~vk+1 ; (4.78)

where

~zk+1 = [~zTk z
T
k+1]

T
; ~Hk+1 = [~HT

k H
T
k+1]

T
; ~vk+1 = [~vTk v

T
k+1]

T
: (4.79)

Direct use of the minimization procedure just described leads to an estimate including the

new observation zk+1, and given by

ŵLS

k+1 = Pk+1
~HT
k+1

~O�1
k+1~zk+1 ; (4.80)

where Pk+1 is de�ned, in analogy to Pk, as

Pk+1 � (~HT
k+1

~O�1
k+1

~Hk+1)
�1

; (4.81)

and ~O�1
k+1 is a new weight matrix that takes into account the observation zk+1.

The processing of an extra observation forces us to have to solve the minimization problem

completely again. In particular, we have to calculate the inverse of an n�n matrix for each

new observation made. This computational burden can be avoided if we assume that the

matrix ~O�1
k+1 can be partitioned in the following manner:

~O�1
k+1 =

"
~O�1
k 0

0 O�1
k+1

#
: (4.82)

that is, ~O�1
k+1 is assumed to be a block{diagonal matrix.

With this assumption, we can write the product of the matrices in Pk+1 as

~HT
k+1

~O�1
k+1

~Hk+1 = [~HT
k H

T
k+1]

"
~O�1
k 0

0 O�1
k+1

# "
~Hk

Hk+1

#

= ~HT
k
~O�1
k
~Hk + HT

k+1O
�1
k+1Hk+1 : (4.83)
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Furthermore, using the de�nitions of the matrices P given above, we have that

P�1k+1 = P�1k + HT
k+1O

�1
k+1Hk+1 (4.84)

or yet, using the Sherman{Morrison{Woodbury formula (e.g., Golub & Van Loan [67], p.

51).

Pk+1 = (P�1k + HT
k+1O

�1
k+1Hk+1)

�1

= Pk � PkH
T
k+1(Hk+1PkH

T
k+1 +Ok+1)

�1Hk+1Pk : (4.85)

De�ning a matrix Gk+1 as

Gk+1 � PkH
T
k+1(Hk+1PkH

T
k+1 +Ok+1)

�1
; (4.86)

we can compactly write

Pk+1 = (I � Gk+1Hk+1)Pk : (4.87)

Therefore the estimate ŵLS

k+1, which includes the new observation can be re{written as

ŵLS

k+1 = (I � Gk+1Hk+1)Pk
~HT
k+1

~O�1
k+1~zk+1 : (4.88)

Using the matrix partition for ~O�1
k+1, introduced above, we can decompose the expression

for the estimate in two terms,

~HT
k+1

~O�1
k+1~zk+1 = ~HT

k
~O�1
k ~zk + HT

k+1O
�1
k+1zk+1 ; (4.89)

and consequently (4.88) is transformed in

ŵLS

k+1 = [I � Gk+1Hk+1]Pk(~H
T
k
~O�1
k ~zk + HT

k+1O
�1
k+1zk+1) ;

= [I�Gk+1Hk+1]ŵ
LS

k + [I�Gk+1Hk+1]PkH
T
k+1O

�1
k+1zk+1 (4.90)

where we used (4.75) to obtain the second equality.

A even better expression for the estimate can be derived if we use the de�nition for the

matrix Gk+1. In this case, the coe�cient of the last term in the previous expression can be

re{written as

[I � Gk+1Hk+1]PkH
T
k+1O

�1
k+1 = [I � Gk+1Hk+1]

�Gk+1(Hk+1PkH
T
k+1 +Ok+1)O

�1
k+1

= [I � Gk+1Hk+1]Gk+1

� (I+Hk+1PkH
T
k+1O

�1
k+1)

= Gk+1[I+Hk+1PkH
T
k+1O

�1
k+1

�Hk+1Gk+1(I+Hk+1PkH
T
k+1O

�1
k+1)]

= Gk+1[I+Hk+1PkH
T
k+1O

�1
k+1

�Hk+1PkH
T
k+1O

�1
k+1]

= Gk+1 : (4.91)
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Thus, the estimate can be placed �nally in the form

ŵLS

k+1 = ŵLS

k + Gk+1(zk+1 �Hk+1ŵ
LS

k ) ; (4.92)

where Gk+1 is given by (4.86). This expression provides a recursive manner of updating

the estimate, given a new observation of the variable of interest and the estimate obtained

before the new observation had been made. This recursive expression requires inverting an

mk+1 �mk+1 matrix embedded in the de�nition of Gk+1 in (4.86), rather than the n � n

matrix (4.81), for each new observation becoming available. This represents an enormous

computational savings especially for n� mk, for all k.

4.4 Relationship between Least Squares and Minimum Vari-

ance

The estimates produced by the minimum variance and least squares methods are of fun-

damental importance in many studies in estimation theory. Consequently, in this section,

we explore the relationship between these two estimates.

To simplify this notation let us omit the index k from the previous section, so that the

observational process can be written just as in (4.34),

z = Hw + v ; (4.93)

Moreover, the estimate of w provided by the least squares method is written as

ŵLS =Mz ; (4.94)

where for convenience we de�ne the n �m matrix M as

M = (HTO�1H)�1HTO�1
: (4.95)

Notice thatMH = I which, assuming the noise v has zero mean is a way of expressing the

fact that the estimate ŵLS is unbiased. To see this, we de�ne the error associated to the

least squares estimate as

~wLS � w � ŵLS ; (4.96)

where once again we use a tilde to indicate an error vector. Application the ensemble

average operator, and using (4.93) and (4.94), it follows that

Ef~wLSg = Ef[w � M(Hw+ v)]g
= �MEfvg
= 0 ; (4.97)

which justi�es the assertion above that the least squares estimate is unbiased.

The least squares estimate error variance can be calculated according to

P~wLS
= Ef~wLS~w

T
LS
g = MEfvvTgMT = MRMT (4.98)
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where R is the (co)variance matrix of the noise v, as de�ned in Section 4.3. Substituting

the value ofM as de�ned above we have

P~wLS
= (HTO�1H)�1HTO�1RO�1H(HTO�1H)�1 : (4.99)

Now remember that, by the procedure of Section 4.3, the linear estimate of minimum

variance, with zero mean �w = 0 and for which P�1w = 0, is given by

~wMV = (HTR�1H)�1HTR�1z : (4.100)

which is the same as that obtained when using the approach of maximum likelihood esti-

mation. As we know, this estimate is also unbiased, and with associated error (co)variance

P~wMV
= (HTR�1H)�1 ; (4.101)

as it can be seen in (4.50) and (4.51), and also (4.61) and (4.64), respectively. Therefore, we

notice by comparison that the estimate obtained by the least squares method is the same

as the one obtained by linear minimum variance when the matrix of weight O used by the

�rst method is substituted by the noise (co)variance matrix, that is, O = R.

In general, the weight matrix used in the least squares method is a general positive de�nite

and symmetric matrix, without any statistical meaning; since the estimate provided by the

minimum variance approach is that with minimum variance, for the linear case, it follows

that in general

P~wLS
� P~wMV

; (4.102)

where the equality holds when O = R. This inequality is valid even if we do not use the

fact that the estimate ŵMV is that of minimum variance. To derive this inequality, we can

use the following matrix inequality

ATA � (BTA)T (BTB)�1(BTA) ; (4.103)

for A and B, of dimensions n�m, with n � m, and B of full rank. This derivation is left

as an exercise.

Exercises

1. (Sage & Melsa [121], Problem 6.1) Another example of cost function, aside from those

given in the main text, is that de�ned by the absolute value of the error: J( ~w) =

j ~wj = jw� ŵj, considering the scalar case. Show that in this case, the estimate ŵABS

that minimizes the Bayes risk is the one for which we have:

Z ŵABS

�1

pwjz(wjz) dw =

Z
1

ŵABS

pwjz(wjz) dw

and that consequently, the estimate with minimum absolute value can be determined

by solving: Z
1

ŵABS

pwjz(wjz) dw =
1

2
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for ŵ = ŵABS. In other words, the estimate with minimum absolute value ŵABS is the

median, as introduced in (1.27). Derive the corresponding modi�cation of the result

above for the vector case, if we de�ne the cost function to be

J(~w) =
X
i

j ~wij

2. Consider the observational process of a binary variable (binary signal), subject to

noise (measurement errors). This scalar observation process can be written as

z = w + v

where w and v are independent, and v is a gaussian noise, represented by N (0; �2
v).

The signal w follows the binary distribution de�ned as

pw(w) = 0:5�(w� 1) + 0:5�(w+ 1)

where � represents the Dirac delta. Then,

(a) Determine the a priori probability density pzjw(zjw).
(b) Show that the probability density pz(z) is given by2

pz(z) =
1

2
p
2��v

(
exp

"
�
(z � 1)2

2�2
v

#
+ exp

"
�
(z + 1)2

2�2
v

#)

(c) Show that the maximum a posteriori probability estimate is ŵMAP = sign(z).

(d) Show that the minimum variance error estimate is ŵMV = tanh
�

z
�2
v

�
.

In the minimum variance estimation case, what happens when the observations be-

come more accurate?

3. Show that the solution of the minimization of JMAP in (4.65) is given by (4.50) with

error estimate (4.49).

4. Writing a few terms for the traces in the expressions below, verify that:

(a)
d[Tr(AB)]

dA = BT , where AB is symmetric

(b)
d[Tr(ACAT )]

dA
= 2AC, where C is also symmetric

Notice that is x is a scalar, we de�ne its derivative with respect to a matrixA according

to:

dx

dA
�

0
BBBBB@

dx
da11

dx
da12

: : :

dx
da21

dx
da22

: : :

: :

: : :

: : :

1
CCCCCA

where aij is the (i; j)-th element of matrix A.

2If a random variable z is de�ned as the summation of two independent random variables w and v the

probability of z can be obtained via the convolution integral:

pz(z) =

Z
1

�1

pw(z � v)pv(v)dv
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5. Show that

Gk+1 = Pk+1H
T
k+1O

�1
k+1

is an alternative expression for the gain matrix Gk+1 found in the least squares esti-

mation method.

6. Let A and B be to n�m matrices, with n � m, and with B full rank (m). Show that

ATA � (BTA)T (BTB)�1 (BTA) :

(Hint: Use the following inequality:

(Ax+By)T (Ax+By) � 0

valid for any two m{vectors x e y.) Now, to show the inequality in (4.102), without

making use of the fact that ŵMV is a minimum variance estimate for the linear case,

make the following choice:

A = R1=2MT
; B = R�1=2H

and complete the proof as suggested in the end of section 4.5.
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