
Chapter 2

Stochastic Processes and Random

Fields

A topic of intrinsic interest in this course is stochastic partial di�erential equations (SPDE).

Although a rigorous treatment of this topic goes beyond our goals, in order to introduce

the fundamental ideas of the basic theory of SPDE, it is necessary to discuss the basic

concepts of stochastic processes and random �elds. These two concepts are nothing more

than extensions of the random variable concept, treated in the previous lecture, for cases

in which these variables have temporal or spatial dependence, respectively. As a matter of

fact there is much similarity between the two concepts at a fundamental level, with some

particular nomenclature di�erences.

2.1 De�nition and Probabilistic Concepts

In the previous lecture, the symbol x(!) referred to the value of a vector random variable

x, resulting from the realization of an experiment !. Stochastic processes are those in which

the random variable is also a function of time, that is, the random variables are de�ned on

the product space 
� T , where T represents the real time line. In this case, we denote by

x(!; t) the result of a stochastic process x(t). In what follows, we utilize the most common

abbreviation of a stochastic process, denoting the stochastic variables as x(t), where !

will be implicit in the notation. Stochastic processes are referred to as discrete{time or

continuous{time depending whether the time domain is discrete or continuous, respectively.

In stochastic processes, an event B in the probability space is denoted by

B = f! 2 
 : x(!; t) � xg : (2.1)

The distribution function for a discrete{time process withN random n{vectors x(t1); � � � ;x(tN),

is de�ned as:

Fx(t1)���x(tN )[x(t1); � � � ;x(tN )] � P (f! 2 
 : x(!; t1) � x1; � � � ;x(!; tN) � xNg) : (2.2)
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with probability density function (if it exits):

px(t1);���;x(tN )[x(t1); � � � ;x(tN )] =
@
nN

Fx(t1)���x(tN )[x(t1); � � � ;x(tN )]

@x(t1) � � �@x(tN )
(2.3)

where we recall that @n=@x = @
n
=@x1 � � �@xn. Consequently, we can write

Fx(t1)���x(tN)[x(t1); � � � ;x(tN )] =Z x(t1)

�1

� � �

Z x(tN)

�1

px(t1)���x(tN)(x
0

1; � � � ;x
0

N) dx
0

1 � � � dx
0

N : (2.4)

In case of a continuous{time process, the probability distribution and probability density

functions are de�ned for all times t, and can be symbolically written as

Fx(x; t) � P (f! 2 
 : x(!; t) � xg) (2.5a)

px(x; t) =
@
n
Fx(x; t)

@x
(2.5b)

respectively.

The concepts of mean, variance and correlation introduced in the previous lecture can be

extended directly to the case of stochastic processes. Therefore, we de�ne concisely these

quantities for this case:

� Mean vector:

�x(t) � Efx(t)g =

Z
1

�1

xpx(t)(x) dx ; (2.6)

� Stationary mean value vector: de�ned when the mean is independent of time, that is

�x � lim
tf!1

1

2tf

Z tf

�tf

x(t) dt : (2.7)

For the case in which the stationary mean value coincides with the ensemble mean �,

the process is called ergodic in the mean.

� Mean for discrete{time processes:

�x � lim
K!1

1

2K + 1

KX
k=�K

x(kT ) (2.8)

where T is the sampling period.

� Quadratic mean value matrix:

�x(t) � Efx(t)x(t)Tg =

Z
1

�1

xx
T
px(t)(x) dx : (2.9)

We can still de�ne the stationary quadratic mean value based on the de�nition of

stationary mean value, as we can de�ne the stationary quadratic mean value for a

discrete{time process utilizing the corresponding de�nition given above.
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� Auto{correlation matrix:

�x(t; �) � Efx(t)xT(�)g ; (2.10)

or explicitly written,

�x(t; �) =

Z
1

�1

Z
1

�1

z y
T
px(t)x(�)(z;y) dzdy : (2.11)

where the word auto refers to the stochastic process x(t).

� Cross{correlation matrix:

�xy(t; �) � Efx(t)yT(�)g : (2.12)

where the word cross refers to the two stochastic processes x(t) and y(t).

� Auto{covariance matrix of a stochastic process:

Cx(t; �) = covfx(t);x(�)g � Ef[x(t)� �
x
(t)][x(�)� �

x
(�)]Tg ; (2.13)

where the designation auto refers to the stochastic process in question, in this case,

only x(t). It is simple to show that

Cx(t; �) = �x(t; �)� �x(t)�
T
x
(�) (2.14)

When t = � , we de�ne the covariance matrix as:

Px(t) � Cx(t; t) ; (2.15)

which is sometimes referred to as the variance matrix.

� Cross{covariance matrix of a stochastic process:

Cxy(t; �) � Ef[x(t)� �
x
(t)][y(�)� �

y
(�)]Tg ; (2.16)

where the designation cross refers to the stochastic processes x(t) and y(t). We can

easily show that

Cxy(t; �) = �xy(t; �)� �x(t)�
T
y
(�) (2.17)

Correlation matrices can be de�ned analogously to the de�nitions given in the previous

lecture.

2.2 Independent Process

We say that a stochastic process x(t) is independent when for all t and � the probability

density px(t);x(�)(x(t);x(�)) = px(t)px(�). In this way, according to (2.11) it follows that

�x(t; �) =

Z
1

�1

Z
1

�1

z y
T
px(t)(z)px(�)(y) dzdy :

=

Z
1

�1

dz z px(t)(z)

Z
1

�1

dy y
T
px(�)(y)

= Efx(t)g EfxT (�)g (2.18)
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Therefore, from the de�nition of auto{covariance matrix it follows that Cx(t; �) = 0, for

t 6= � , that is, an independent stochastic process is uncorrelated in time. In an entirely

analogous way, we can show that if two stochastic processes x(t) and y(t) are independent,

they are also uncorrelated, that is, Cxy(t; �) = 0, for any t and � . As in the case of random

variables, the contrary of this relation is not necessarily true, that is, two uncorrelated

processes are not necessarily independent.

2.3 Markov Process

As in stochastic processes in general, a Markov process can be continuous or discrete

depending on whether the time parameter is continuous or discrete, respectively. A discrete

stochastic process (i.e., stochastic sequence) fx(tk)g, for tk > t0, or a continuous stochastic

process x(t), for t > t0, is said to be a Markov process if, for all � � t,

px(t)j�(�)[x(t)j�(�)] = px(t)jx(�)[x(t)jx(�)] (2.19)

where �(�) = fx(s); t0 � s � � � tg, and analogously �(�) = fx(s); t0 � s � � � tg.

More speci�cally for the discrete case, a �rst{order Markov process, also referred to as a

Markov{1 process, is one for which

pxkjxk�1���x1x0(xk jxk�1; � � � ;x1;x0) = pxkjxk�1(xk jxk�1) (2.20)

That is to say, a Markov{1 process is one for which the probability density at time t, given

all states up to t, in the interval [t0; � ], depends only on the state at the �nal time, � , of the

interval. This is nothing more than a way of stating the causality principle: the state of a

process at a particular moment in time is su�cient for us to determine the future states of

the process, without us having to know its complete history.

In the discrete case, we can write for the joint probability density

p�k(�k) = pxk ���x1x0(xk ; � � � ;x1;x0)

= pxk jxk�1���x1x0(xkjxk�1; � � � ;x1;x0) pxk�1���x1x0(xk�1; � � � ;x1;x0)

(2.21)

where we utilize the property (1.77). Assuming that the stochastic process is �rst{order

Markov, according to (2.20) we have that

p�k(�k) = pxkjxk�1(xk jxk�1) pxk�1���x1x0(xk�1; � � � ;x1;x0) (2.22)

and utilizing repeatedly the de�nition (2.20) we obtain

p�k(�k) = pxkjxk�1(xk jxk�1) pxk�1jxk�2(xk�1jxk�2) � � � px1jx0(x1jx0) px0(x0) (2.23)

Therefore, the joint probability density of a Markov{1 process can be determined from the

initial marginal probability density px(0)[x(0)], and from the probability density px(t)jx(s)[x(t)jx(s)],

for t � s 2 [t0; �), and t < � .The quantity px(t)jx(s)[x(t)jx(s)] is known as the transition

probability density of a Markov process.
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The concept of Markovian process can be extended to de�ne Markov processes of di�erent

orders. For example, a discrete stochastic process for which the probability density at time

tk depends on the process at times tk�1 and tk�2 can be de�ned as those for which we have:

pxk jxk�1���x1x0(xkjxk�1 � � � ;x0) = pxkjxk�1xk�2(xkjxk�1;xk�2) (2.24)

which in this case is called a second{order Markov process, or Markov{2. Analogously,

we can de�ne k
th{order Markov processes. In those cases considered in this course, the

de�nition given in (2.20) for �rst{order Markov processes is su�cient.

2.4 Gaussian Process

A stochastic process in n dimensions fx(t); t 2 Tg, where T is an arbitrary interval of time,

is said to be Gaussian if for any N instants of time t1; t2; � � � ; tN in T , its density function,

distribution function, or characteristic function, is normal. In other words, the process is

Gaussian if the vectors x(t1);x(t2); � � � ;x(tN) are jointly Gaussian distributed. According

to what was seen in the previous lecture we can write the density function of this process

as:

pz(z) =
1

(2�)Nn=2jPzj
1=2

exp

�
�
1

2
(z � �

z
)TP�1

z
(z � �

z
)

�
; (2.25)

where the vector z, of dimension Nn = N � n, is de�ned as:

z �

0
BBBB@

x(t1)

x(t2)
...

x(tN )

1
CCCCA ; (2.26)

the mean vectors �
z
(ti), of dimension Nn are given by

�
z
(ti) � Efz(ti)g ; (2.27)

for i = 1; 2; � � � ; N , and the covariance Pz, of dimension (N �n)2 = Nn�Nn, has elements

which are the sub{matrices

Pz = [Px]ij � Ef [x(ti)� �
x
(ti)] [x(tj)� �

x
(tj)]

T
g (2.28)

for i; j = 1; 2; � � � ; N . In this way, a Gaussian process is completely determined by its mean

and its autocovariance. A process which is simultaneously Gaussian and Markovian is said

to be a Gauss{Markov process.

2.5 Stationary Process

A precise de�nition of the concept of stationary process can be given by returning to the

concept of probability. However, for what interests us, it is su�cient to utilize wide{sense
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stationary processes, which only requires that the �rst two moments be time{independent.

In this sense, a stationary process is one for which the mean is independent of time:

�
x
(t) = �

x
; (2.29)

and for which the correlation only depends on the time interval � between events:

�x(t; �) = �x(t� �) ; (2.30)

which can be written as:

�x(�) = �x(t + �; t) = Efx(t+ �)xT (t)g : (2.31)

An even weaker concept of stationary process is de�ned when the covariance is stationary.

In this case,

Cx(�) = Cx(t + �; t) = �x(t+ �; t) � �
x
(t + �)�T

x
(t) (2.32)

These concepts apply similarly to \cross{quantities", that is, the cross{correlation and

cross{covariance

�xy(�) = �xy(t+ �; t) = Efx(t+ �)yT(t)g : (2.33a)

Cxy(�) = Cxy(t+ �; t) = �xy(t+ �; t) � �
x
(t+ �)�T

y
(t) (2.33b)

respectively, are stationary. In this case, it is simple to show that

�xy(�) = �yx(��) (2.34a)

Cxy(�) = Cyx(��) (2.34b)

since stationary covariances and correlations are invariant under a time translation of �� .

2.6 Wiener{Khintchine Relation

A de�nition that follows from the concept of stationary process introduced above is given by

the Wiener{Khintchine relation. This relation de�nes the spectral density of the stationary

covariance as being the Fourier transform of the covariance. For a continuous stochastic

process the power spectrum of the covariance can be written as:

Ĉx(!) �

Z
1

�1

Cx(�)e
�i!�

d� ; (2.35)

and consequently, by the inverse Fourier transform we have that

Cx(�) =
1

2�

Z
1

�1

Ĉx(!)e
i!�

d! : (2.36)

For discrete stationary processes the discrete Fourier transform de�nes the corresponding

power spectrum.
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2.7 White Noise Process

The simplest power spectrum that we can think of is the one given by a constant, that is,

one for which Ĉ(!) � Q̂w(!) = Qw, where the stochastic process w is called white noise.

In this case, the covariance becomes a Dirac delta:

Qw(�) =
1

2�
Qw

Z
1

�1

e
i!�

d!

= Qw�(�) : (2.37)

Even if this noise is completely non{physical, because it is in�nite at the origin, it is of

great importance in the development of stochastic di�erential equations.

2.8 Wiener Process

A Wiener process, also called Brownian motion, denoted by b(t), is de�ned as the integral

of a stationary, Gaussian white noise process w(t) with zero mean:

b(t) =

Z t

0
w(t) dt ; (2.38)

where

covfw(t);w(�)g= Qw�(t� �) ; (2.39)

as we saw above. Some of the properties of this process are listed below:

1. b(t) is normally distributed.

2. Efb(t)g = 0, for all t � 0.

3. Pfb(0) = 0g = 1.

4. b(t) has independent and stationary increments, that is, independent of time. We

refer to increments as being the di�erences b(t1)� b(t2); � � � ; b(tn�1)� b(tn), where

ti+1 < ti, with ti 2 T .

5. b(t) is a Markov process.

Moreover the variance of a Wiener process increases linearly in time:

varfb(t)g = Efb(t)bT (t)g =

Z t

0

Z t

0
Efw(t1)w

T(t2)g dt1 dt2

= Qw

Z t

0

Z t

0
�(t1 � t2) dt1 dt2

= Qw

Z t

0
dt1 = Qw t ; (2.40)
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where we used the following de�nition of a delta function:Z t

0
f(s)�(t� s) ds =; f(t) : (2.41)

It is important to notice that the di�culty encountered in the description of a Gaussian

white noise process, the problem of in�nite variance, does not exist for the Wiener process.

That means, the latter is a well{behaved process.

2.9 Spatial Random Fields

The literature on random stochastic �elds is relatively smaller than that on stochastic

processes. Still, there are several treatments, such as those of Vanmarcke [132] and Yaglom

[140]. A more recent treatment, directed toward earth science applications is the one of

Christakos [24]. In what follows, we will be as concise as possible, keeping in mind that the

main purpose of this section is to introduce the concepts of homogeneity and isotropy for

random �elds.

The concept of random �elds can be introduced similarly to the way we introduced stochastic

processes. In this case, we associate with each random variable x1; x2; � � � ; xn the points

r1; r2; � � � ; rn in the space R
n. A random spatial �eld can be considered a function of

events ! 2 
, where 
 is the sample space introduced in the previous lecture, and also a

function of the spatial position r 2 R
n, that is, x(r) = x(!; r). When we write x(r) we

are simplifying the notation in a manner entirely analogous to what we did in the previous

section, when the variable was the time. This concept can be extended to several random

variables depending on space in order to motivate the introduction to vector random spatial

�elds. We denote by x(r) the vector random �eld which represents the set of random spatial

�elds x1(r); x2(r); � � � ; xm(r), that is,

x(r) = [x1(r); x2(r); � � � ; xm(r)]
T (2.42)

The distribution function of a vector random spatial �eld is then de�ned as:

Fx(x; r) = P (f! : x(r) � x; r 2 R
n
g) : (2.43)

We emphasize once more that the concept of random �elds is an extension of the concept

of stochastic process. A stochastic process is a random �eld for which the spatial argument

r 2 R
n, is introduced for n = 1 and r ! r ! t so that the random variable becomes x(t),

as before.

The distribution function is related to the probability density by means of the expression

px(x; r) =
@
n
Fx(x; r)

@x
(2.44)

and consequently

Fx(x; r) =

Z x
�1

px(x
0
; r) dx0 : (2.45)
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The concepts of mean, variance and correlation can be extended directly for the case of

random spatial �elds. Therefore we de�ne concisely these quantities in this case:

� Mean value of a random �eld:

�x(r) � Efx(r)g =

Z
1

�1

xpx(r)(x; r) dx ; (2.46)

� Auto{covariance matrix of a random spatial �eld:

Cx(ri; rj) = covfx(ri);x(rj)g � Ef[x(ri)� �
x
(ri)][x(rj)� �

x
(rj)]

T
g ; (2.47)

for two spatial points ri and rj , where we made an analogy with what we saw in

stochastic processes; auto refers to the random �eld in question, in this case x(r).

Then, we have that

Cx(ri; rj) = Efx(ri)x
T (rj)g � �x(ri)�

T
x
(rj) (2.48)

When ri = rj , we have the variance matrix which describes the local behavior of the

random �eld.

In order to simplify and more easily demonstrate the notation, consider the case of a scalar

random �eld x(r). The mean introduced above becomes a scalar quantity �(r), that is, a

function of \one" spatial variable r 2 R
n. The covariance becomes a function (no longer a

matrix) of \two" spatial variables ri; rj. The variance is a function given by

�
2
x(r) = Cx(r; rj = r) (2.49)

for r = ri. We can still introduce the spatial correlation function �x(ri; rj) between two

points as:

�x(ri; rj) =
Cx(ri; rj)

�x(ri)�x(rj)
(2.50)

A scalar random spatial �eld is said to be uncorrelated when

Cx(ri; rj) =

(
�
2
x(r) ; for ri = rj = r

0 ; otherwise
(2.51)

and in fact, such a random �eld is said to be a white �eld (analogously to the white process

seen previously).

Basically all the concepts de�ned for random processes can be generalized for spatial random

�elds:

� Markovian process ! Markovian �eld

� Gaussian process ! Gaussian �eld

� white process ! white �eld
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as for the concepts of characteristic function, conditional probability function, conditional

mean, conditional covariance, etc.

A very important generalization is that of the concept of stationarity of a stochastic process,

which for spatial random �elds translates into the concept of homogeneity. In the wide sense,

a spatial random �eld is said to be homogeneous when its mean value is independent of

the spatial variable, and its covariance depends only on the distance between two points in

space. For the scalar case, this can be written as:

�x(r) = � (2.52a)

Cx(ri; rj) = Cx(r = ri � rj) (2.52b)

Another fundamental concept is that of the isotropic spatial random �eld, which is de�ned

as a �eld for which

Cx(ri; rj) = Cx(r = jri � rj j) (2.53)

is satis�ed. That is, a spatial random �eld is said to be isotropic when its covariance depends

only on the magnitude of the distance between two points in space.

It is possible to show (e.g., Christakos [24]) that for a homogeneous random �eld, not

necessarily isotropic, we can write the covariance function as

Cx(r) =

Z
Rn

exp(iwT
r) Ĉx(w) dw (2.54)

where Ĉx(w) is the spectral density function that, by the inverse Fourier transform, can be

written as:

Ĉx(w) =
1

(2�)n

Z
Rn

exp(�iwT
r)Cx(r) dr (2.55)

This result can be generalized for the case of vector random �elds. Notice that for real

random �elds, the covariance and spectral density can in fact be expressed in terms of

Fourier cosine integrals.

Cx(r) =

Z
Rn

cos(wT
r) Ĉx(w) dw (2.56a)

Ĉx(w) =
1

(2�)n

Z
Rn

cos(wT
r)Cx(r) dr (2.56b)

The importance of these results lies in the fact that they provide a relatively simple criterion

to determine whether a continuous and symmetric function in R
n can be a covariance

function. In fact, the necessary and su�cient condition for a continuous function Cx(ri; rj)

in R
n to be a covariance function is that it be a positive{semide�nite function, that is,

Z
Rn

Z
Rn

Cx(ri; rj)f(ri)f(rj) dri drj � 0 (2.57)

for any function f(r). This criterion is generally very di�cult to verify, even for homoge-

neous random �elds. However, utilizing the spectral representation above, Bochner's [15]
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theorem says that the criterion for a continuous and symmetric function in R
n to be a

covariance function is that its spectral function be positive{semide�nite

Ĉx(w) � 0 (2.58)

for w 2 R
n.

A relevant result that appears in atmospheric data assimilation concerns the isotropic case

with n = 2, that is, in R
2. In this case, Cx(r) = Cx(r), where r = jrj. Introducing

polar coordinates: r = (x; y) = (r cos �; r sin �) and w = (w cos';w sin '); and recalling

the change of variables in integrals means that we should calculate the determinant of the

Jacobian matrix that corresponds to the transformation, that is

jJac(r; �)j �

�����
@x
@r

@x
@�

@y
@r

@y
@�

����� =
����� cos � �r sin �

sin � r cos �

����� = r (2.59)

where the notation j:j is used for the determinant. In this way, using the fact that the

integral over R2 for any function f(x; y) is transformed into an integral over the circle C as

Z
1

0

Z
1

0
f(x; y) dx dy =

Z
1

0

Z 2�

0
f(r cos �; r sin �) r dr d� (2.60)

(e.g., Apostol [4], pp. 479{485), the integral in (2.56b) becomes

Ĉx(w) = Ĉx(w) =
1

(2�)2

Z
1

0
Cx(r) r

Z 2�

0
cos(wT

r) d�

=
1

(2�)2

Z
1

0
Cx(r) r

Z 2�

0
cos[wr cos(� � ')] d� (2.61)

where the last equality is obtained by treating the inner product explicitly:

w
T
r = rw cos � cos'+ rw sin � sin '

= rw cos(� � ') (2.62)

where w = jwj. Now performing the transformation, � ! � + ' + �=2, we have that

cos(� � ') ! � sin �, and therefore the integral of the expression above is independent of

'. This means that the result of the integral is also independent of ', as should be the case

for isotropic covariances. Introducing the Bessel function of order zero:

J0(x) =
1

2�

Z 2�

0
cos(x sin �) d� (2.63)

(e.g., Arfken [5], pp. 579{580), we have that in two dimensions

Ĉx(w) =
1

2�

Z
1

0
J0(wr)Cx(r)r dr (2.64)

Utilizing the orthogonality of the Bessel function of order zero:Z
1

0
rJ0(wr)J0(w

0
r) dr =

1

w
�(w � w

0) (2.65)
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(e.g., Arfken [5], p. 594), we obtain for the isotropic covariance function in two dimensions

the formula:

Cx(r) = 2�

Z
1

0
J0(wr)Ĉx(w)wdw (2.66)

It is interesting to mention that the concept of ergodicity can also be extended to spatial

random �elds. In an entirely analogous way to what can be done for stochastic processes,

a spatial random �eld is said to be ergodic if its spatial mean and covariance coincide with

its ensemble mean and covariance, respectively.

Exercises

1. (Problem 4.3, Meditch [103]) Assuming that three scalar stochastic process fx(t); t 2

Tg, fy(t); t 2 Tg and fz(t); t 2 Tg are pairwise independent, show that they are not

necessarily triplewise (simultaneously) independent.

2. Calculate the power spectrum for stationary processes having the following autocor-

relation functions:

(a) Gaussian pulse: �(�) = �
2
e
��2=T 2

(b) Damped cosine wave: �(�) = �
2
e
��j� j cos!0�

(c) Triangular pulse:

�(�) =

(
1� j� j ; for j� j � 1

0 ; otherwise

3. (Problem 2.17, Brown [19]) The stationary process x(t) has mean � = const: and an

autocorrelation function of the form

�(t; t + �) = �(�) = �
2
e
��2=T 2

Another process y(t) is related to x(t) by the deterministic equation

y(t) = a x(t) + b

where a and b are known constants.

(a) What is the auto{correlation function for y(t)?

(b) What is the cross{correlation function �xy(�)?

4. (Problem 2.20, Brown [19]) Two random processes are de�ned by

x(t) = a sin(!t + �)

y(t) = b sin(!t+ �)

where � is a random variable with uniform distribution between 0 and 2�, and ! is a

known constant. The coe�cients a and b are both normal random variables Nf0; �2g

and are correlated with a correlation coe�cient �. What is the cross{correlation

function �xy(�)? (Assume a and b are independent of �.)
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5. Show that the following are admissible candidates for a covariance function:

(a) Cx(r) = a�(r), for a > 0 and r 2 R
n

(b) Cx(x; y) = Cx(r = jx � yj) = � exp(�r2), for x; y 2 R
1. (Hint: In this case,

the proof can be obtained by either showing that (2.57) is true, or showing that

(2.58) is satis�ed. Use (2.58) and expand exp(2xy) in Taylor series.)

6. Show that in R
3 the isotropic spectral density function can be expressed as

Ĉx(w) =
1

2�2

Z
1

0

sin(wr)

w
Cx(r)r dr

and that consequently the corresponding covariance function is given by

Cx(r) = 4�

Z
1

0

sin(wr)

r
Ĉx(w)wdw

7. (Problem 7.14, Maybeck [101]) In Monte Carlo analyses and other type of system sim-

ulations (e.g., non{identical twin experiments), it is often desired to generate samples

of a discrete{time white Gaussian noise vector process, described by mean zero and

covariance

Efwkw
T
k g = Qk

with Qk nondiagonal. Independent scalar white Gaussian noises can be simulated

readily through use of pseudorandom codes (as we have seen in our �rst computer

assignment), but the question remains, how does one properly provide for cross{

covariances of the scalar noises?

(a) Let vk be a vector process composed of independent scalar white Gaussian noises

of zero mean and unit variance:

Efvj;kg = 0 Efv
2
j;kg = 1 for k = 1; 2; : : :

where vj;k is the j{th component of vk, at time tk. Show that

wk = Lkvk for all k

properly models the desired characteristics. The matrix Lk above corresponds

to the Cholesky lower triangular square root of Qk , that is, Qk = LkL
T
k . Notice,

that if the Cholesky upper triangular square root had been used instead, the

corresponding expression for generating wk would be

wk = Ukvk for all k

where, in this case, Qk = UkU
T
k .

(b) If Uk and Dk are the U{D factors of Qk, that is, if Qk = UkDkU
T
k , where Uk

are upper triangular and unitary matrices and Dk are diagonal matrices, show

that,

wk = Ukuk for all k
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also provides the desired model if uk is a vector process composed of independent

scalar white Gaussian noises of mean zero and variance:

Efu
2
j;kg = dj;j;k ;

where uj;k is the j{th component of uk, at time tk , and dj;j;k is the (j; j) element

of Dk , at time tk (i.e., the j{th element along its diagonal).

8. Computer Assignment: We want to use the results of the previous problem to perform

Monte Carlo experiments for a given correlation and/or covariance structure. As a

preparation for that, in this problem we are going to create a Matlab function that

generates a homogeneous correlation on a grid de�ned over R1 and examine some of

its properties. Let us start by consider the interval (�Lx; Lx], and let us divide it in

a uniform grid of J points. Consider also the homogeneous and isotropic, Gaussian

correlation function in R
1
�R

1, that is,

Q(x; y) = Q(r = jx� yj) = exp(�
1

2
(x� y)2=L2

d)

where r = jx� yj is the distance between any two points in the domain, and Ld is the

(de)correlation length. Therefore the points in the discrete domain can be de�ned as

xj = j�x

where �x = 2Lx=J , for j 2 f�J=2 + 1; J=2g, and the elements of the homogeneous,

isotropic correlation matrix Q are given by

Qij = Q(xi; yj)

(a) Construct a Matlab function that returns the covariance matrix Q, given the

half{length of the domain Lx, the number of grid points J , and the (de)correlation

length Ld. For (Lx; Ld; J) = (1; 0:2; 32), compute Q using this function. Make a

contour plot of the correlation array. (Note: A real convenient way of generating

this matrix in Matlab is using the intrinsic function meshgrid .)

(b) For the parameters of the previous item, plot the correlation function at the

following two speci�c locations: xj 2 f0; Lxg.

(c) Is the Q obtained above an acceptable correlation matrix? Explain it. (Hint:

Check its eigenvalues.)

(d) From the �gures constructed in the previous items, we see that the correlation

decreases very quickly toward values that are nearly zero. (You can actually

print out the values in Q to check it further). It could be computationally

advantageous, particularly to reduce storage requirements, to approximate this

correlation \function" (matrix) by one that neglects correlation values beyond

a certain cut{o� length Lc. In this way, only the elements of the matrix cor-

responding to jrj � Lc would need to be stored. Without worrying about the

storages savings, modify the function of item (a), to construct a new matrix Qc,

by replacing the values of Q for which jrj > Lc by zero. Using the same param-

eters as in item (a), and a cut{o� value of Lc = 3Ld, make a contour plot of the

resulting correlation structure. Also, repeat item (b).
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(e) A visual comparison of the plots in items (a) and (b) with those of item (d) seem

to indicate that our approximation is fairly reasonable. Is the correlation of the

previous item, an acceptable correlation matrix?

9. Computer Assignment: The result obtained in the last item of the previous exercise

makes us wonder what is the correct way of constructing a correlation �eld that has the

structure that we want, but is zero beyond a certain correlation length. The procedure

to generate what are called compact{support correlation functions is through the use

of convolution of functions. (Note: see Gaspari and Cohn (1996) for the details on

constructing these correlation functions in R
2 and R

3, that are of primary importance

in modeling covariances for data assimilation). Another way of looking at convolution

of functions is to think on the Hadamard product for the case of matrices. Without

getting into the mathematical details, this problem has the intention to guide you

though the steps of building an actual correlation matrix for the function of the

previous problem. Consider then the compact{support triangular correlation function

discussed earlier in the text:

T (x; y) ==

(
1� jx� yj=Lc ; for jx� yj � Lc

0 otherwise

Then perform the following tasks:

(a) Repeat items (a){(c) of the previous exercise, but now for the compact{support

function T (r) = T (jx� yj). (Note: The matrix T has elements Tij = T (xi; yj).)

(b) Construct a matrix �Q as the Hadamard product of the matrix Q, of item (a)

in the previous exercise, and T from the previous item, corresponding to the

function T (r). That is, let �Q be given by

�Q � Q �T = [QijTij]

(Note: Matlab does the Hadamard product trivially). Make a contour plot �Q,

and repeat item (c) of the previous exercise.

(c) To get yet another visual representation of what the correlations from Q, T and
�Q are like, plot the correlation functions obtained from these three matrices at

point x = 0. (Please, have all three curves on the same frame).

10. Computer Assignment: Using the Matlab function created in item (a) of Exercise 8

(i.e., without a cut{o� length), let us apply the results of Exercise 7 to understand

better what correlated noise actually is.

(a) Create a Matlab function that performs a Monte Carlo experiment given the

number of samples. We want the output of this function to be the sampled

correlation matrix, obtained from a weighted sum of outer products of the vectors

wk of Exercise 7. To obtain the Cholesky decomposition of the correlation matrix

Q of Exercise 8, use the Matlab function chol . Make contour plots for the three

sampled correlation matrices obtained by using 100, 1000, 10000 samples.

(b) Now using the identity matrix, in the 32{dimensional space of Exercise 8, perform

a Monte Carlo run, with 1000 samples, assuming this identity matrix is the

correlation matrix of interest. Make a contour plot of the resulting sampled

correlation matrix. Compare this result with those obtained in the previous

item. In particular, explain the meaning of using an identity correlation matrix.
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