EXAMPLE 2.3

Consider a time signal (e.g., a voltage) that is generated according to the fol-
lowing rules: (a) The waveform is generated with a sample-and-hold arrange-
ment where the “‘hold” interval is 1 sec; (b) the successive amplitudes are
independent samples taken from a set of random numbers with uniform distri-
bution from —1 to +1; and (c) the first switching time after r = 0 is a random
variable with uniform distribution from O to 1. (This is equivalent to saying the
time origin is chosen at random.) A typical sample realization of this process is
shown in Fig. 2.3. Note that the process mean is zero and its mean-square value
works out to be one-third. [This is obtained from item (b) of the description.]
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Figure 2.3 Sampie signal for Example 2.3.

(Brown and Hwang 1997)

EXAMPLE 2.4
Consider another time function generated with a sample-and-hold arrangement
with these properties: (a) The “hold” interval is 0.2 sec, (b) the successive
amplitudes are independent samples obtained from a zero-mean normal distri-
bution with a variance of one-third, and (c) the switching points occur at mul-
tiples of .2 units of time; that is, the time origin is not chosen at random in this
case. A sketch of a typical waveform for this process is shown in Fig. 2.4. W
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Figure 2.4 Typical waveform for Example 2.4.

(Brown and Hwang 1997)



EXAMPLE 4.1 Consider two scalar zero-mean processes x(-) and y(-) with

W, (1), 0) = Pulty, 1) = ate” 90T W (1, ) = Py, 1) = gle”InTnlor

where these two correlations are plotted as a function of the time difference (¢, — 1,) in Fig. 44.
For a given value of (1, — t;) # 0, there is a higher correlation between the values of y(t,) and
y(1;) than between x(t,) and x(t,). Physically one would then expect a typical sample x(-,w;) to
exhibit more rapid variations in magnitude than y(-,w;), as also depicted in Fig. 44. Note that
such information is not contained in P,.(t) and P, (¢), or ‘¥, (1) and ¥,,(1), all of which are the

same value for this example, o2, as seen by evaluating the preceding expressions for t; = t,. [ |
P.\,\“lv ll) or \l'_“(l 1> '2) Pyy“l: '2) or q‘yy('h 12)
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FIG. 44 Second moment information about stochastic processes. (a) Correlation or variance
kernels. (b) Typical samples from the stochastic processes.

Maybeck (1979)



EXAMPLE 4.2 Figure 4.6 depicts the autocorrelation functions and power spectral density
functions (using the most common convention of definition) of a white process, an exponentially
time-correlated process, and a random bias. Note that a white noise is uncorrelated in time,
yielding an impulse at 7 = 0 in Fig. 4.6a; the corresponding power spectral density is flat over
all w—equal power content over all frequencies. Figure 4.6b corresponds to an exponentially
time-correlated process with correlation time T, as discussed in Example 4.1. Heuristically, these
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FI1G. 4.6 Typical autocorrelations and power spectral densities. (a) White process. (b) Ex-
poncntially time-correlated process. (c) Random bias. (M o.s)\:ec.k 1aTa)




Bandlimited white noise

Bandlimited white noise is a random process whose spectral amplitude is
constant over a finite range of frequencies, and zero outside that range. If the
bandwidth includes the origin (sometimes called baseband), we then have

.« _ JA, |w| = 27W
Sbwn(]w) - {O, le > 2aW (2.9.3)

where W is the physical bandwidth in hertz. The corresponding autocorrelation
function is

sin(27Wr)

R, (1) = 2WA > aWe

(2.9.4)

Both the autocorrelation and spectral density functions for baseband bandlimited
white noise are sketched in Fig. 2.13. It is of interest to note that the autocor-
relation function for baseband bandlimited white noise is zero for 7 = 1/2W,
2/2W, 3/2W, etc. From this we see that if the process is sampled at a rate of
2W samples/second (sometimes called the Nyquist rate), the resulting set of
random variables are uncorrelated. Since this usually simplifies the analysis, the
white bandlimited assumption is frequently made in bandlimited situations.
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Figure 2.13 Baseband bandiimited white noise. (a) Autocorrelation function. (b) Spectral
density function.

Brown and Hwang (1997)
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0 otherwise

cov(X X )= { o’ if k=1

Graph 3.1. 500 observations from a white noise process. M( Q, ))

(Priead ley agL)

Xk+1

=0.6x *g, g 1s N(0,1)

Graph 3.2. 500 observations from an AR(1) process.

Priestley (1981)



