
Chapter 6

The Kalman filter

In the last chapter, we saw that in Data Assimilation, we ultimately desire knowledge of the full
a posteriori p.d.f., that is the conditional p.d.f. of the state given the observations. In practice,
it is difficult to determine the complete p.d.f., so we can instead try to estimate some parameter
of the p.d.f. that can serve as a “best” estimate of the state. Various principles lead to various
estimators. The Minimum Variance (MV) estimator is the conditional mean (of the state given the
observations) while the Maximum of the A Posteriori (MAP) p.d.f. leads to the mode of conditional
p.d.f. For our measurement equation, assuming Gaussian background and observation errors allows
us to determine the complete a posteriori p.d.f. Also, the MV and MAP estimators are identical.
The MV estimator leads to the OI equations. The MAP estimator leads to 3DVAR. For linear
observation operators and Gaussian error statistics, 3DVAR and OI are therefore equivalent.

Thus far, we have only considered the spatial estimation problem, that is, when observations
are distributed in space, but at a single point in time. For stationary processes, the mean and
covariance are constant in time so that the data assimilation scheme could be applied at different
times using the same statistics. 3DVAR and OI are both examples of 3D data assimilation schemes.
For the global NWP problem, the errors are assumed stationary over the time scale of 1 month.
However, ultimately, for environmental applications, we must consider nonstationary processes,
because the governing equations are time-varying.

In this chapter, we will extend our analysis of the previous chapter to include the time dimension.
This will enable us to derive the linear Kalman Filter (KF) for discrete time processes. If we are
interested in data assimilation, why do we talk of a “filter”? Historically, in signal processing theory,
the idea was to separate the signal from the noise, based on the the assumption of a frequency gap
or separation between the signal and noise. (In fact, if small overlaps occurred in the frequency
domain, it didn’t matter so long as the noise frequencies are primarily filtered.) For stationary
processes, Wiener developed his filter to extract the signal. The Kalman filter, developed in 1960,
solved the problem in state-space and for time-varying systems.

Before we can define our stochastic-dynamic system describing the signal and measurement
processes, we must first briefly review linear dynamical systems.
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6.1 Linear Dynamical Systems

Consider the linear dynamical system:

ẋ(t) =
dx

dt
= F(t)x(t) + L(t)u(t) +G(t)w(t). (6.1)

Let us consider each of the components of this equation. The state vector, x(t), is composed of
a set of variables which completely describe the unforced motion of the system. In other words,
given the state vector at a point in time, and the forcing and the controlling inputs from that time
forward, the state at any other time can be computed. For a given physical system, the state vector
is not unique. i.e. If x(t) is a state vector, so too is x′(t) = A(t)x(t). F represents the dynamics
of the model. w(t) is the random system or model error and G(t) is the operator which maps this
error into state space. The existence of this term is a recognition of the fact that our models are
only approximations to the true (atmospheric) dynamics. Thus, even if we knew the truth (on our
model basis), a forecast from this truth using our imperfect model would ultimately diverge from
reality. Finally, u(t) are the inputs to the system (sources) and L is the operator mapping the
inputs to state space. For example, if our system was a chemical-transport process, u(t) would be
the emissions of pollutants into the atmosphere. If emissions are occurring at only some spatial
locations, then L is an interpolation operator from emission space to state space.

6.1.1 Stability of the model

Consider the unforced system

ẋ = Fx (6.2)

This system can be written in difference form:

xk+1 = φkxk. (6.3)

Recursive substitution for time-invariant φ yields:

xk+1 = φk+1x0. (6.4)

Thus the state remains bounded only if |φ| ≤ 1. The model dynamics are stable if eigenvalues of
φ are less than or equal to 1.

6.1.2 Transition matrix

Let us ignore model error for the moment. The solution to the system, (6.1), can be written in
terms of its trajectory in state space as

φ(t;u(τ),x0, t0). (6.5)

If there are no inputs, the solution is

φ(t;x0, t0). (6.6)

Definition: The transition matrix φ(t, t0) is the n× n matrix such that

x(t) = φ(t;x0, t0) = φ(t, t0)x0. (6.7)
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Substituting (6.7) into

ẋ = F(t)x (6.8)

yields

φ̇(t, t0) = F(t)φ(t, t0) (6.9)

with initial condition φ(t0, t0) = I. For a time-invariant system,

φ(t, t0) = φ(t− t0)

and (6.9) becomes

φ̇(t− t0) = Fφ(t− t0) (6.10)

or

φ(t− t0) = eF(t−t0).

There is NO general solution for the transition matrix of time-varying linear systems.

For a discrete-time system with no stochastic error, we can write our system as

xk+1 = φkxk +Λkuk (6.11)

where xk = x(tk), Λk = L(tk) and the transition matrix takes the state from time tk to time tk+1:

φk = φ(k, k + 1).

Properties of the transition matrix

Property Continuous time Discrete time

(1) Transition: φ(t2, t0) = φ(t2, t1)φ(t1, t0) φ(k,m) = φ(k, l)φ(l,m)
(2) Inversion: φ(t0, t1) = φ−1(t1, t0) φ(m, k) = φ−1(k,m)
(3) Identity: φ(t0, t0) = I φ(m,m) = I

Now that we have the homogeneous solution, what is the solution to the system equation with
inputs? i.e.

ẋ(t) =
dx

dt
= F(t)x(t) + L(t)u(t) (6.12)

with x(t0) = x0. The solution is

x(t) = φ(t, t0)x0 +

∫ t

t0
φ(t, τ)L(τ)u(τ)dτ. (6.13)

Before checking that this solution satisfies (6.12), recall Leibnitz’ rule:

d

dt

∫ B(t)

A(t)
f(t, τ)dτ =

∫ B(t)

A(t)

d

dt
f(t, τ)dτ + f(t, B(t))

dB

dt
− f(t, A(t))

dA

dt
(6.14)

109



Now substitute (6.13) into the left side of (6.12):

ẋ(t) = φ̇(t, t0)x0 +

∫ t

t0
φ̇(t, τ)L(τ)u(τ)dτ + φ(t, t)L(t)u(t)

= F(t)φ(t, t0)x0 +

∫ t

t0
F(t)φ(t, τ)L(τ)u(τ)dτ + L(t)u(t)

= F(t)

[

φ(t, t0)x0 +

∫ t

t0
φ(t, τ)L(τ)u(τ)dτ

]

+ L(t)u(t)

= F(t)x(t) + L(t)u(t) (6.15)

which equals the right side of (6.12). Thus (6.12) is satisfied by (6.13). Similarly, the solution of
(6.1) is

x(t) = φ(t, t0)x0 +

∫ t

t0
φ(t, τ)L(τ)u(τ)dτ

∫ t

t0
φ(t, τ)G(τ)w(τ)dτ. (6.16)

For the corresponding discrete-time system,

xk+1 = φkxk +Λkuk + Γkwk (6.17)

Γkwk =

∫ tk+1

tk

φ(tk+1, τ)G(τ)w(τ)dτ

Λkuk =

∫ tk+1

tk

φ(tk+1, τ)L(τ)u(τ)dτ (6.18)

6.2 Observability and controllability

In this section, we introduce the concepts of observability and controllability. These concepts can
be established for linear models and observation operators. The following discussion will consider
only time-invariant linear models and observation operators for which these concepts are most
easily established and demonstrated. The extension for general linear models is noted in Todling
(1999). Because we cannot determine these principles for general nonlinear models and observation
operators, they are of little relevance for us, in practice. Nevertheless, it is useful to know that these
concepts exist, for simple systems. Furthermore, the concepts of observability and controllability
are needed to establish the conditions for stability of the Kalman filter, in later sections.

6.2.1 Observability

A system is observable if we can determine the sequence of states, x0,x1, . . . ,xk from the sequence
of measurements, zo, z1, . . . , zk. Consider the case of a linear, time-independent system. For a
perfect model (i.e. no model error):

xk+1 = φxk (6.19)

when there are no inputs, uk = 0, and xk is an n-vector. Assume there are r scalar noise-free
observations:

zk = Hxk, k = 0, 1, 2, . . . , r − 1 (6.20)
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where H is a time-invariant 1× n matrix. Then,

z0 = Hx0

z1 = Hx1 = Hφx0

z2 = Hx2 = Hφ2x0
...

zr = Hxr = Hφr−1x0. (6.21)

If we define

y =

















zo

z1
z2
...
zr

















and Z =
[

HT φTHT (φT)2HT · · · (φT)r−1HT
]

(6.22)

then
y = ZTx0

and x0 is uniquely determined if ZT is non-singular, or has a rank of r. If we can determine x0
uniquely, then from (6.19), we can determine xk for k = 1, 2, . . . , r. A system is observable at
t1 > t0, if x(t0) can be determined by observing z(t), t ∈ [t0, t1]. If all states x(t) corresponding to
all z(t) are observable, the system is completely observable.

Example: (Gelb, Ex. 3.5-1, p. 69)
Is the system







ẋ1
ẋ2
ẋ3






=







0 0 0
0 0 0
1 1 0













x1
x2
x3






+







w1

w2

0






, z = x3 = [ 0 0 1 ]







x1
x2
x3






(6.23)

observable? To answer this question, note that

HT =







0
0
1






,φTHT =







0 0 1
0 0 1
0 0 0













0
0
1






=







1
1
0






,φTφTHT =







0 0 1
0 0 1
0 0 0













1
1
0






=







0
0
0






.(6.24)

Therefore

Z =







0 1 0
0 1 0
1 0 0






(6.25)

and det(Z) = 0. The system is NOT observable. If we measure only the sum of x1 and x2, we
cannot determine both x1, and x2 since they are spectrally identical. This is clearer if we write the
system as

ẋ1 = w1

ẋ2 = w2

ẋ3 = x1 + x2
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If instead

ẋ1 = x1 + w1

ẋ2 = w2

ẋ3 = x1 + x2

the system would be observable. Check this yourself.

6.3 Controllability

Controllability is concerned with the effect of inputs upon model states. A discrete time sys-
tem model is completely controllable if for any vectors, x0,xN ∈ Rn, there exists a sequence
u(0),u(1), . . . ,u(N − 1), which can drive any x0 to state xN . Consider a linear time-invariant
system model:

xk+1 = φxk +Λuk, (6.26)

where xk is an n-vector, φ is n× n, uk is an m-vector and Λ is n×m. We can write xN in terms
of x0.

xN = φxN−1 +ΛuN−1

= φ[φxN−2 +ΛuN−2] +ΛuN−1

= φ2xN−2 + φΛuN−2 +ΛuN−1

= φ3xN−3 + φ
2ΛuN−3 + φΛuN−2 +ΛuN−1

= φNx0 + φ
N−1Λu0 + φ

N−2Λu1 + . . .+ΛuN−1 (6.27)

If we define

Θ = [ Λ φΛ φ2Λ . . . φN−1Λ ]

U = [ uTN−1 uTN−2 . . . uT1 uT0 ]T (6.28)

then we can write

xN = φNx0 +ΘU (6.29)

where Θ is n × Nm and U is Nm × 1. In order for xN to be completely controllable, all ui,
0 ≤ i ≤ N − 1 must have an impact on x0. Therefore, the n×Nm matrix Θ must have rank N .

Example: Consider the system:

[

ẋ1
ẋ2

]

=

[

−α 0
0 −β

] [

x1
x2

]

+

[

1
1

]

u (6.30)

Find α and β such that the system is controllable. Answer:

Θ = [ Λ φΛ ] =

[

1 −α
1 −β

]

(6.31)

112



so that det(Θ)=−β + α 6= 0. Thus, the system is controllable if α 6= β. If α = β, the two first
order systems are identical and there is no way a single input u could by itself produce different
values for x1 and x2. If we consider instead,

[

ẋ1
ẋ2

]

=

[

−α 1
0 −β

] [

x1
x2

]

+

[

1
c

]

u (6.32)

then

Θ = [ Λ φΛ ] =

[

1 −α+ c
c −βc

]

(6.33)

and det(Θ)=c(−β + α− c) 6= 0. Thus, this system is controllable when α 6= β + c.
More generally, for linear, discrete-time systems,

xk+1 = φkxk +wk,

zk = Hkxk + vk (6.34)

is observable if and only if I(k, 0) ≥ 0 where

I(k, k −N) =
k
∑

i=k−N

φT
i,kH

T
i R

−1
i Hiφi,k. (6.35)

This system is completely controllable if and only if C(k, 0) ≥ 0 where

C(k, k −N) =
k
∑

i=k−N

φT
i,kQ

−1
i φi,k. (6.36)

Derivation of (6.35) and (6.36) are beyond the scope of this course. Note that observability does
NOT depend on the observations, just on their location and accuracy and the system dynamics.

Suppose we have a linearized, global shallow water model with variables being the normal
modes of the system, i.e. rotational and gravitational modes. If the gravity waves are unobserved,
or poorly observed, σ2grav → ∞ so σ−2

grav → 0. Therefore, R−1
i has some 0 eigenvalues and is not

positive definite. Thus the system is not observable because the gravity waves are not observable.
This is the usual case for a global forecast model. The high frequency waves are not observable
because the observation network is too widely spaced.

Similarly, controllability depends only on the model dynamics and model error covariance ma-
trix. If some modes are very inaccurately predicted by the model, these modes cannot be controlled
by specifying inputs.

For nonlinear system models, there is no condition to establish observability or controllability.
Even for linear models, because of model truncation errors and round-off errors, it is hard to
establish controllability and observability numerically.

6.4 Derivation of the discrete linear Kalman Filter

Consider the following stochastic-dynamic system:

xk+1 = φkxk +wk, (6.37)

zk = Hkxk + vk. (6.38)
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wk is the model error and vk is the observation error. The model state at time tk is xk, an n-
vector, while the observed state is zk, an m-vector. The transition matrix, φk is then n×n and the
observation operator, Hk, is m × n. Let us make the following assumptions about the stochastic
inputs: they are unbiased and independent of each other. They are also white in time. This means
that for all k and l,

< wk >= 0, < wk(wl)
T >= Qkδ

k
l

< vk >= 0, < vk(vl)
T >= Rkδ

k
l

< wk(vl)
T >= 0. (6.39)

The equations (6.37) and (6.38) define our stochastic- dynamic model for our system. That is, if
we had the true state, x, and true measurements, z, and our imperfect discrete forecast model, φk,
and observation operator, Hk, the state would evolve according to (6.37) and (6.38). Thus, we are
assuming that we know the actual error statistics of the model error, wk, and the observation error,
vk. The assumptions about unbiased errors and uncorrelated errors (in time or with each other)
are not critical. Extensions of the standard KF can be derived should any of these assumptions
not hold.

The KF problem is this: given a prior (background) estimate, x̂f
k , of the system state at time

tk, what is the update or analysis, x̂a
k, based on the measurements, zk? The background, x̂f

k , bears
a superscript f , referring to the fact that it is derived from a model forecast. The superscript a
refers to the analysis, or estimate. We shall seek this estimate (or analysis) in the linear, recursive
form:

x̂a
k = L̃kx̂

f
k + K̃kzk. (6.40)

To start this recursive process, we must have an initial estimate. The mean of the initial state is
assumed to be given by a forecast,

< x0 >= x̂
f
0

and its error covariance matrix is given by

P
f
0 =< (x̂f

0 − x0)(x̂
f
0 − x0)

T > .

This initial estimate is assumed uncorrelated with the model and observation errors for all time.
Let us define our errors. The analysis and forecast errors are:

ea
k = x̂a

k − xk

e
f
k = x̂

f
k − xk (6.41)

where xk is the true state at time tk.

The analysis equation can be rewritten in terms of errors by subtracting the truth from both
sides of (6.40).

ea
k = L̃k(x̂

f
k + xk − xk)− xk + K̃kzk

= L̃ke
f
k + L̃kxk − xk + K̃k(Hkxk + vk)

= (L̃k + K̃kHk − I)xk + L̃ke
f
k + K̃kvk. (6.42)
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The advantage of writing the analysis equation in terms of errors is that we know something about
these errors, namely, their means and covariances. Thus, we can use this information to help
us determine an optimal estimate. First consider the bias of the analysis error. By definition,
< vk >= 0. Now if the forecast error is unbiased, < e

f
k >= 0, then

< ea
k > = (L̃k + K̃kHk − I) < xk > . (6.43)

If we want an unbiased estimate, then we must require that

L̃k = I− K̃kHk (6.44)

so that the estimator (6.40) becomes

x̂a
k = x̂

f
k + K̃k(zk −Hkx̂

f
k). (6.45)

The estimation error can then be written as

ea
k = (I− K̃kHk)e

f
k + K̃kvk. (6.46)

K̃k is the weight matrix or gain matrix. K̃k is the weight given to the observations. In the scalar
case, 0 ≤ K̃k ≤ 1. Different estimators will result in different choices for K̃k. It is interesting to
note that the form of (6.45) is that of a linear combination of our two data sources: the background
and the observations. What remains is to determine the Kalman gain, K̃k. To do this let us form
the analysis error covariance matrix (i.e. the estimation error covariance matrix). By definition,

Pa
k = < (ea

k)(e
a
k)

T >

= (I− K̃kHk) < (ef
k)(e

f
k)

T > (I− K̃kHk)
T + K̃k < (vk)(vk)

T > K̃T
k

= (I− K̃kHk)P
f
k(I− K̃kHk)

T + K̃kRkK̃
T
k (6.47)

Note that we used the fact that the observation error and background (forecast) errors are uncor-
related for all times. This fact can be proven by induction using the fact that the initial error is
uncorrelated with the observation error. The last line of (6.47) is called Joseph’s formula. This
equation says that the analysis error is due to background and observation errors. If the observa-
tions are accurate and plentiful, K̃kHk ≈ I so that the analysis error is given by the observation
error projected onto state space. If there are no observations or they are very inaccurate, K̃k = 0
and the analysis error is given by the background error.

To update the estimate, we use our forecast model:

x̂
f
k+1 = φkx̂

a
k. (6.48)

The truth actually evolves according to (6.37) since our model is imperfect. Thus we can subtract
(6.48) - (6.37) to define our forecast error. i.e.

e
f
k+1 = φke

a
k −wk. (6.49)

Now if our analysis is unbiased, then the forecast is unbiased since our model error was assumed
to be unbiased. Our forecast error covariance is by definition,

P
f
k+1 = < (ef

k+1)(e
f
k+1)

T >

= < (φke
a
k −wk)(φke

a
k −wk)

T >

= φk < (ea
k)(e

a
k)

T > φT
k + < (wk)(wk)

T >

= φkP
a
kφ

T
k +Qk. (6.50)
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Note that we used the fact that the analysis error and observation errors are uncorrelated at all
times. This can be proven by induction using the fact that the initial state error and model errors
are uncorrelated at all times. (6.50) describes the evolution of forecast errors. Forecast error is seen
to be due to two terms: the amplification of analysis error at time step k through the dynamics of
the model, and model error. The first term can also be viewed as predictability error. Thus, if our
model dynamics contains unstable growing modes, analysis errors can grow. This error growth can
be unbounded if we don’t have observations to damp it (see (6.47)). If our model contains only
decaying modes at time step k, the analysis error can actually be damped, if this term is larger
than the model error term. If a perfect model assumption is made, the second term, Qk = 0.

Now, (6.47) and (6.50) together with the initial conditions, completely describe the evolution
of forecast error covariances. Note that the evolution of forecast errors does not depend on the
observations, the background or analyses, themselves. It depends only on the observation and
model error covariances and on the observation distribution, Hk.

The derivation here is simpler than that in Todling (1999) because observations are assumed
to be available at every time step. Todling writes more generally that

x̂
f
k = φk,k−lx̂

f
k−l.

Thus, observations are available at every l time steps rather than at every time step. This notation
uses the fact that when observations come every l steps we can use the transition matrix from time
step k − l to l. (Recall the transition property of transition matrices.) Thus, in (6.48), the update
step is not the model time step but the interval between observations.

The Kalman filter is obtained from a particular choice of K̃k, that obtained by minimizing the
analysis error variance. Thus we want to minimize:

J a
k = E(|ea

k|2Sk
)

= < (ea
k)

TSk(e
a
k) >

= < Tr(Sk(e
a
k)(e

a
k)

T) >

= Tr(SkP
a
k) (6.51)

where Sk is a positive definite scaling matrix. Setting the derivative with respect to K̃k to 0 and
substituting for Pa

k using (6.47) yields

d

dK̃k

J a
k = Sk

[

−2HkP
f
k(I− K̃kHk)

T + 2RkK̃
T
k

]

= 0 (6.52)

or

K̃k = Kk = P
f
kH

T
k (HkP

f
kH

T
k +Rk)

−1. (6.53)

Kk is the optimal weight matrix called the Kalman gain. For this choice of Kk, (6.47) becomes

Pa
k = (I−KkHk)P

f
k (6.54)

This is shown in problem 5.1.
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Summary of discrete Kalman filter equations

system model: xk+1 = φkxk +wk, < wk >= 0, < wk(wl)
T >= Qkδ

k
l

measurement model: zk = Hkxk + vk, < vk >= 0, < vk(vl)
T >= Rkδ

k
l

other assumptions: < wk(vl)
T >= 0

initial conditions: < x0 >= x̂
f
0 ,P

f
0 =< (x̂f

0 − x0)(x̂
f
0 − x0)

T >

forecast step: x̂
f
k+1 = φkx̂

a
k

P
f
k+1 = φkP

a
kφ

T
k +Qk

analysis step: x̂a
k = x̂

f
k +Kk(zk −Hkx̂

f
k)

Pa
k = (I−KkHk)P

f
k

Kalman gain: Kk = P
f
kH

T
k (HkP

f
kHk +Rk)

−1

Theorem: For the system (6.37) and (6.38) with wk, vk uncorrelated zero mean processes and

< wk(wl)
T >= Qkδ

k
l , < vk(vl)

T >= Rkδ
k
l , and where x0 has mean x̂f

0 and covariance Pf
0 and is

uncorrelated with wk and vk, the Kalman filter is the best estimator of a certain type of linear
estimator (6.40) in that it produces the smallest estimation error covariance.

If the errors are additionally assumed to be Gaussian, then the KF is the best estimator of any
kind (linear or nonlinear). In this case, we can see that the Kalman filter is a recursive algorithm
for estimating the a posteriori p.d.f. of the state given the observations. After an estimate is made
at time step k, the analysis error covariance matrix can be computed, thus defining the complete a
posteriori p.d.f. for time step k. The state estimate and error covariance are then propagated to the
next time step according to the model dynamics. Using this information and the new observations
at step k + 1, a new estimate is made for this time step and the cycle is repeated. The KF will be
examined from the conditional density viewpoint in section 6.7.

6.5 Simple KF examples

Example 1: No observations. With no observations, Kk = 0 so that

x̂a
k = x̂

f
k (6.55)

Pa
k = P

f
k (6.56)

x̂
f
k+1 = φkx̂

a
k (6.57)

P
f
k+1 = φkP

a
kφ

T
k +Qk (6.58)

Thus, we can drop the analysis stage of the algorithm to get

x̂
f
k+1 = φkx̂

f
k (6.59)

P
f
k+1 = φkP

f
kφ

T
k +Qk (6.60)

with initial conditions x̂f
0 = x̂0, P

f
0 = P0. Therefore the model runs with no data injection.

For neutral or unstable dynamics, the forecast error grows without bounds. During an NWP
assimilation cycle, observations come every 6 hours, so the model runs for 6 hours (i.e. 6 time steps
for the GEM model) without data. Thus during this time, the forecast error grows and is damped
only when data arrives. This results in the typical “sawtooth” pattern of error variance evolution.
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Enter initial guess

x̂
f
0 , P

f
0

Compute Kalman Gain

Kk = P
f
kH

T
k (HkP

f
kHk +Rk)

−1

forecast step:

x̂
f
k+1 = φkx̂

a
k

P
f
k+1 = φkP

a
kφ

T
k +Qk

Update estimate with obs.

x̂a
k = x̂

f
k +Kk(zk −Hkx̂

f
k)

Compute analysis error cov.

Pa
k = (I−KkHk)P

f
k

Figure 6.1: The Kalman Filter algorithm

Example 2: Perfect observations of model variables at every gridpoint. If observations are
perfect then Rk = 0. Observations of model variables at every gridpoint means that Hk = I. Thus
the KF equations reduce to:

Kk = P
f
kH

T
k (HkP

f
kHk)

−1 = I (6.61)

x̂a
k = x̂

f
k + (zk − x̂

f
k) = zk (6.62)

Pa
k = (I−KkHk)P

f
k = 0 (6.63)

x̂
f
k+1 = φkx̂

a
k = φkzk (6.64)

P
f
k+1 = φkP

a
kφ

T
k +Qk = Qk (6.65)

This is the ideal: perfect observations at every gridpoint. In this case, we can again skip the
analysis step since the observations are perfect. The KF reduces to

x̂
f
0 = z0 (6.66)

P
f
0 = 0 (6.67)

x̂
f
k+1 = φkzk (6.68)

P
f
k+1 = Qk. (6.69)

Since R is the sum of instrument and representativeness error, R = 0 means that only scales
resolved by the model are observed. The forecast is then obtained by integrating the observed
state. The forecast error is limited to the model error because the observations are perfect.

Example 3: Brownian motion Consider the scalar system:

xk+1 = xk + wk (6.70)
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zk = xk + vk (6.71)

where Qk = 1, Rk = 1/4, xf
0 = 0 and P f

0 = 0. Also, in the KF equations, the transition matrix
φ = 1 and the observation operation, Hk = 1. Thus the KF equations are:

Kk = P f
k (P

f
k + 1/4)−1 (6.72)

P a
k = (1−Kk)P

f
k (6.73)

P f
k+1 = P a

k + 1 (6.74)

x̂f
k+1 = x̂a

k (6.75)

x̂a
k = x̂f

k +Kk(zk − x̂f
k) (6.76)

The Kalman gain can be written in terms of P a
k :

Kk =
P a

k−1 + 1

P a
k−1 + 5/4

so that the update for the error variance can be written:

P a
k =

P a
k−1 + 1

4P a
k−1 + 5

To summarize:

x̂a
k = x̂a

k−1 +
P a

k−1 + 1

P a
k−1 + 5/4

(zk − x̂a
k−1) (6.77)

P a
k =

P a
k−1 + 1

4P a
k−1 + 5

. (6.78)

To start, note that K0 = 0 so that x̂a
0 = 0 and P a

0 = 0. Then for k = 1,

K1 =
1

5/4
=

4

5
= 0.8

x̂a
1 = 0 +K1(z1 − 0) =

4

5
z1 (6.79)

P a
1 =

1

5
= 0.2. (6.80)

For k = 2,

K2 =
1
5 + 1
1
5 +

5
4

=
24

29
≈ 0.827

x̂a
2 =

4

5
z1 +K2(z2 −

4

5
z1) =

4

29
z1 +

24

29
z2 (6.81)

P a
2 =

1
5 + 1
4
5 + 5

=
6

29
≈ 0.207 (6.82)

What happens in the limit that k →∞? When k →∞, Pk ≈ Pk−1. Thus

P a
∞ =

P a
∞ + 1

4P a
∞ + 5

.
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The solutions are

P a
∞ =

1

2
(−1±

√
2).

The positive definite solution is

P a
∞ =

1

2
(−1 +

√
2) ≈ 0.2071

and

K∞ =
P a
∞ + 1

P a
∞ + 5/4

=
2 + 2

√
2

3 + 2
√
2
≈ 0.828

In this case, the KF approaches the steady state filter in just two steps! This is because the
dynamics are neutral and the observation error covariance R = 1/4 << Q = 1. The observations
are relatively accurate compared to the model error. The state, being scalar, is completely observed
when an observation is available. Thus dense, accurate observations combined with steady, linear
dynamics lead to a stable filter.

6.6 The information filter

In this section we derive a different form of the discrete KF, which is very useful when we have no
background information.

First recall the equation for the analysis error covariance, (6.54) and substitute for the optimal
gain using (6.53):

Pa
k = (I−KkHk)P

f
k

= P
f
k −P

f
kH

T
k (HkP

f
kH

T
k +Rk)

−1HkP
f
k . (6.83)

Another form for the analysis error covariance equation is

(Pa
k)

−1 = (Pf
k)

−1 +HT
k (Rk)

−1Hk. (6.84)

To verify that (6.84) is correct, multiply (6.83) by it:

[Pf
k −P

f
kH

T
k (HkP

f
kH

T
k +Rk)

−1HkP
f
k ][(P

f
k)

−1 +HT
k (Rk)

−1Hk]

= I−P
f
kH

T
k (HkP

f
kH

T
k +Rk)

−1Hk −P
f
kH

T
k (HkP

f
kH

T
k +Rk)

−1HkP
f
kH

T
k (Rk)

−1Hk +P
f
kH

T
k (Rk)

−1Hk

= I+P
f
kH

T
k [(Rk)

−1 − (HkP
f
kH

T
k +Rk)

−1(I+HkP
f
kH

T
k (Rk)

−1)]Hk

= I+P
f
kH

T
k [(Rk)

−1 − (HkP
f
kH

T
k +Rk)

−1(R+HkP
f
kH

T
k )(Rk)

−1]Hk

= I+P
f
kH

T
k [(Rk)

−1 − (Rk)
−1]Hk

= I. (6.85)

Now that we have verifed that (6.84) is correct, let us substitute this into (6.53) to get

Kk = P
f
kH

T
k (HkP

f
kHk +Rk)

−1

= [(Pf
k)

−1 +HT
k (Rk)

−1Hk]
−1HT

kR
−1
k

= [(Pa
k)

−1]−1HT
k (Rk)

−1

= Pa
kH

T
k (Rk)

−1. (6.86)
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f
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−1

Compute analysis error cov.

(Pa
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−1 = (Pf
k)

−1 +HT
k (Rk)

−1Hk

Invert to get Pa
k

forecast step:

x̂
f
k+1 = φkx̂

a
k

P
f
k+1 = φkP

a
kφ

T
k +Qk

Invert to get (Pf
k+1)

−1

Compute Kalman Gain

Kk = Pa
kH

T
kR

−1
k

Update estimate with obs.

x̂a
k = x̂

f
k +Kk(zk −Hkx̂

f
k)

Figure 6.2: The alternative Kalman Filter algorithm

To get the second line, we used the Sherman-Morrison-Woodbury formula defined in Chapter 4,
equation (5.27). Now we can summarize this form of the KF:

Summary of the information filter equations

system model: xk+1 = φkxk +wk, < wk >= 0, < wk(wl)
T >= Qkδ

k
l

measurement model: zk = Hkxk + vk, < vk >= 0, < vk(vl)
T >= Rkδ

k
l

other assumptions: < wk(vl)
T >= 0

initial conditions: < x0 >= x̂
f
0 ,P

f
0 =< (x̂f

0 − x0)(x̂
f
0 − x0)

T >

forecast step: x̂
f
k+1 = φkx̂

a
k

P
f
k+1 = φkP

a
kφ

T
k +Qk

analysis step: x̂a
k = x̂

f
k +Kk(zk −Hkx̂

f
k)

(Pa
k)

−1 = (Pf
k)

−1 +HT
k (Rk)

−1Hk

Kalman gain: Kk = Pa
kH

T
k (Rk)

−1

This process is depicted in Fig. 6.2.

Example 6.1 Estimation of a random constant.

Suppose we have a sequence of noisy measurements and we wish to estimate a random constant.

The deterministic model is then

xk+1 = xk.

The transition matrix, φk = I, and the model error covariance matrix is Q=0. The measurements

are z = [z1, z2, . . . , zN ]T and the measurement error variance is the same for all of them. Thus,

121



the measurement equation can be written as

z =













1
1
...

1













x +













v1
v2
...

vN













and the observation error covariance is R = σ2I. There is no initial background state. To represent
this lack of knowledge, we set

P
f
0 =∞, x̂

f
0 = 0.

We can’t deal with infinite variances with the usual KF algorithm, but the alternative algorithm can

be used.

Proceeding with the first step of the alternative form of the KF:

(Pa
0)

−1 = (Pf
0)

−1 +HT
0 (R0)

−1H0

= [ 1 1 · · · 1 ]σ−2I













1
1
...

1













=
N

σ2
. (6.87)

Thus

Pa
0 =

σ2

N
.

Next, the Kalman gain is computed as

K0 = Pa
0H

T
0 (R0)

−1

=
σ2

N
[ 1 1 · · · 1 ]σ−2I

=
1

N
[ 1 1 · · · 1 ] (6.88)

Finally, the estimate is given by

x̂a
0 = x̂

f
0 +K0(z−H0x̂

f
0)

= K0z

=
1

N
[ 1 1 · · · 1 ]













z1
z2
...

zN













=
z1
N

+
z2
N

+ . . .+
zN

N
. (6.89)

Thus the Kalman filter says that the best estimate is given by the average of all the observations in

the absence of a background.
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Example 6.2 A recursive algorithm.

In the previous example, we took all observations at the same time, since the dynamics were

steady. We could equally well have done the problem, one observation at a time, using N time

steps. In this case, the measurement equation is simply the scalar equation:

zk = xk + vk.

Here, Hk = 1 and the observation error covariance matrix is a scalar: Rk = σ2. Now let’s start

again. Since there is no observation at time t0, K0 = 0 and x̂f
1 = x̂a

0 = x̂f
0 = 0 and P

f
1 = Pa

0 =∞.

The first step is

(Pa
1)

−1 = (Pf
1)

−1 +HT
1R

−1
1 H1 = σ−2. (6.90)

Thus, Pa
1 = σ2. Next, the gain is

K1 = Pa
1H

T
1R

−1
1 = σ2σ−2 = 1.

Then the updated estimate is

x̂a
1 = x̂f

1 +K1(z1 −H1x̂
f
1) = z1.

In the forecast step, we obtain

x̂f
2 = x̂a

1 = z1

Pf
2 = Pa

1 = σ2.

In the next iteration, we start with the analysis equations again:

(Pa
2)

−1 = (Pf
2)

−1 +HT
2R

−1
2 H2 = 2σ−2

K2 = Pa
2H

T
2R

−1
2 = 1/2

x̂a
2 = x̂f

2 +K2(z2 −H2x̂
f
2) = z1 + 0.5z2 − 0.5z1 = 0.5(z1 + z2) (6.91)

then follow with the forecast step:

x̂f
3 = x̂a

2 = 0.5(z1 + z2)

Pf
3 = Pa

2 = 0.5σ2.

The next analysis step yields:

(Pa
3)

−1 = (Pf
3)

−1 +HT
3R

−1
3 H3 = 3σ−2

K3 = Pa
3H

T
3R

−1
3 = 1/3

x̂a
3 = (1−K3H3)x̂

f
3 +K3z3 =

2

3

1

2
(z1 + z2) +

1

3
z3 =

1

3
(z1 + z2 + z3). (6.92)

It should now be apparent that with each step of the Kalman filter, an observation is ingested and

the estimate is a running average. This procedure can be continued until step N . The estimate

would be as found in the previous example, except, instead of taking all observations together, we

used them one by one in a recursive manner.
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6.7 The conditional density viewpoint

We have derived the KF by minimizing the analysis error variance. However, in the previous
chapter, we showed that the minimum variance estimator is the conditional mean. How does this
relate to the KF derivation? In this section, we re-interpret the KF problem from the conditional
density viewpoint.

Suppose we have Zk = (z0, z1, . . . , zk)
T the set of all observations up to and including tk. What

does knowledge of Zk tell us about the state xk? We know from chapter 4 that we ultimately want
to know pxk|Zk

(xk|Zk) . We also know that the minimum variance estimator is the conditional
mean, i.e.

xa
k = E(xk|Zk).

Now using the definition of conditional density, we can rewrite this p.d.f. in terms of those we
know. i.e.

pxk|Zk
(xk|Zk) = pxk|Zk−1,zk

(xk|Zk−1, zk)

=
p(xk,Zk−1, zk)

p(Zk−1, zk)

=
p(zk|xk,Zk−1)p(xk,Zk−1)

p(Zk−1, zk)

=
p(zk|xk,Zk−1)p(xk|Zk−1)p(Zk−1)

p(zk|Zk−1)p(Zk−1)

=
p(zk|xk,Zk−1)p(xk|Zk−1)

p(zk|Zk−1)
(6.93)

The above was derived by repeatedly applying Bayes’ theorem. After the second equality, the
subscripts on the probabilities were dropped for convenience. Now, if we assume that all quantities
are Gaussian, then we can completely specify the a posteriori p.d.f. p(xk|Zk). Therefore, assume

that wk is N(0,Qk), vk is N(0,Rk), x0 is N(x̂f
0 ,P0), and wk and xk are white in time and

uncorrelated with each other. Also the initial state error is assumed uncorrelated with the model
and observations errors at all times. Because the observation error is white, we can write

p(zk|xk,Zk−1) = p(zk|xk)

so the conditional p.d.f. we are looking for (6.93) can be simplified to

pxk|Zk
(xk|Zk) =

p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
. (6.94)

What are the terms in (6.94)? In ch. 4, we already determined p(zk|xk) (except without subscripts).
For Gaussian errors (as assumed here),

p(zk|xk) ∼ N(Hkµk,Rk). (6.95)

To determine the next term, we need to have at our disposal, a prior estimate (its mean and error

covariance), x̂f
k , P

f
k . We shall stretch our notation to let xk be the true state conditioned on the

data stream, Zk−1. Then,

p(xk|Zk−1) ∼ N(x̂f
k ,P

f
k). (6.96)
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We can determine what the background estimate’s mean is. It is the conditional mean of xk given
Zk−1. Thus

x̂
f
k = E(xk|Zk−1)

= E(φk−1xk−1 +wk−1|Zk−1)

= φk−1E(xk−1|Zk−1) + E(wk−1|Zk−1)

= φk−1x̂
a
k−1. (6.97)

This equation says that to update the mean of the analysis estimate, propagate it in time using
the model dynamics to get the background estimate for the next analysis step. When we derived
the KF earlier in this note, we assumed exactly this update equation on an ad hoc basis. Here,
however, we have produced exactly the same update/forecast step, justifying our previous choice.

We can similarly develop the covariance matrix for the background. It is given by the conditional
covariance of the state at time tk given the sequence of observations, Zk−1.

P
f
k = E(xkx

T
k |Zk−1)

= E((φk−1xk−1 +wk−1)(φk−1xk−1 +wk−1)
T|Zk−1)

= φk−1E(xk−1x
T
k−1|Zk−1)φ

T
k−1 + E(wk−1w

T
k−1|Zk−1)

= φk−1P
a
kφ

T
k−1 +Qk. (6.98)

The cross terms have disappeared from the third line because of the whiteness assumption of model
errors. Because our prior (background) estimate is coming from the evolution of a previous analysis,
the error of the state includes the error of using the conditional mean update. Thus, the forecast
error includes not only the evolution of the analysis error but also the model error.

What remains now is to determine the denominator of (6.94). Since zk = xk +Hkvk we can
determine the mean and covariance of p(zk|Zk−1).

E(zk|Zk−1) = E((Hkxk + vk)|Zk−1)

= HkE(xk|Zk−1) + E(vk|Zk−1)

= Hkx̂
f
k . (6.99)

The covariance is

E(zkz
T
k |Zk−1) = E((Hkxk + vk)(Hkxk + vk)

T|Zk−1)

= HkE(xkx
T
k |Zk−1)H

T
k + E(vkv

T
k |Zk−1)

= HkP
f
kH

T
k +Rk (6.100)

As a result we can say that

p(zk|Zk−1) ∼ N(Hkx̂
f
k ,HkP

f
kH

T
k +Rk). (6.101)

Finally, we can substitute (6.95),(6.96) and (6.101) into (6.94) to get

pxk|Zk
(xk|Zk) =

N(Hkµk,Rk)N(x̂f
k ,P

f
k)

N(Hkx̂
f
k ,HkP

f
kH

T
k +Rk)

= N(x̂a
k,P

a
k) (6.102)
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where

x̂a
k = x̂

f
k +Kk(zk −Hkx̂

f
k)

Kk = P
f
kH

T
k (HkP

f
kHk +Rk)

−1

(Pa
k)

−1 = (Pf
k)

−1 +HT
kR

−1
k Hk (6.103)

and the update step is given by (6.97) and (6.98). Thus, we can now see that in chapter 4, we
derived the analysis step of the Kalman filter (with no update equations for the background). Thus
3D schemes such as OI and 3DVAR can be viewed as degraded KF’s where the covariance update
is omitted since it is assumed constant in time. Also, the schemes lose the optimality property
because the error covariance matrices are only approximated and not known exactly.

For Gaussian errors, the conditional mean is also the most likely value (the mode or MAP
estimator). Therefore the KF is the best estimator by almost any measure. If the errors are not
assumed Gaussian, then the estimator x̂(z) will be a (not necessarily linear) function of z. If we seek
an estimator which is a linear function of z, then the KF is the estimator which corresponds to the
minimum variance. Thus it is said to have the Best Linear Unbiased Estimator (BLUE) property.
However the KF would not give a conditional mean estimate which would be the minimum variance
estimate since a nonlinear estimator may have lower variance than the linear one. Still the KF
would provide the minimum variance of all linear estimators.

We have seen that the KF provides a procedure for updating the conditional p.d.f., in the
Gaussian case since on the first 2 moments are needed to define the p.d.f. The conditional means
and covariances are:

x̂
f
k = E(xk|Zk−1) P

f
k = E(xkx

T
k |Zk−1)

x̂a
k = E(xk|Zk) Pa

k = E(xkx
T
k |Zk) (6.104)

6.8 Properties of the discrete KF

1. The KF is a linear discrete-time finite dimensional system.

2. The input to the filter is {zk} and the output is {x̂k}.

3. The conditional covariances

P
f
k = E[(xk − E(xk))(xk − E(xk))

T|Zk−1]

= E[(xk − x̂
f
k)(xk − x̂

f
k)

T|Zk−1]

= E[(xk − x̂
f
k)(xk − x̂

f
k)

T]

Pa
k = E[(xk − E(xk))(xk − E(xk))

T|Zk]

= E[(xk − x̂a
k)(xk − x̂a

k)
T|Zk]

= E[(xk − x̂a
k)(xk − x̂a

k)
T]

are INDEPENDENT of the observations and are therefore also the unconditional covariances.

4. When {xk} and {zk} are jointly Gaussian, then {xk|Zk−1} can be shown to be Gaussian. The
conditional p.d.f. is completely defined by the conditional mean and covariance. Therefore,
the KF describes a procedure for updating the entire conditional p.d.f. of xk.
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5. In the Kalman gain definition, the inverse of HkP
f
kH

T
k +Rk is required. Since Pf

k and Rk are
covariance matrices, they are positive semi-definite. One way to force positive definiteness
of HkP

f
kH

T
k + Rk is to require that Rk be positive definite. i.e. Thus no measurement is

allowed to be perfect. Since Rk actually includes representativeness error as well, this is not
unrealistic.

6. If the forecast model is time invariant and the input and output noises are stationary, φk,
Hk, Qk, Rk are all constant. However the KF will in general be time-varying.

7. If {xk} and {zk} are not Gaussian, the KF describes the Best Linear minimum variance
estimator (BLUE property). However, it does not give a conditional mean analysis which
would be the minimum variance estimator because a nonlinear estimator may have lower
variance.

8. The innovation sequence is white. Let

dk = zk −Hkx̂
f
k

= Hkxk + vk −Hkx̂
f
k (6.105)

= Hk(φk−1xk−1 +wk−1) + vk −Hkφk−1x̂
a
k−1

= −Hkφk−1e
a
k−1 +Hkwk−1 + vk (6.106)

then < dk >= 0 (from (6.106), and

< dkd
T
k >= HkP

f
kH

T
k +Rk

from (6.105). Because ea
k−1, wk−1 and vk are all independent of Zk−1, then dk is also

independent of Zk−1. However, by definition, dj for j < k are all linear functions of Zk−1.
Therefore dk is independent of dj for j < k. Thus dk is a WHITE sequence. This fact is
important because it means that we have a way to monitor the filter’s performance while it
is operating: check the whiteness of dk (it is already computed as part of the KF).

6.9 Filter divergence

Filter divergence is the name given to the phenomenon where the filter seems to behave well, with
low predicted analysis error variance, while the analysis is actually drifting away from reality.

Divergence occurs when our modelling assumptions are not true. For example, the model error
is higher than we said it was, or the system model has the wrong form, or the system is unstable
or has bias errors when none was expected. When you have assumed large model errors, and have
a very stable model and no biases, divergence problems are avoided.

How do you know if divergence is occuring if you don’t know the truth? You can monitor the
innovation sequence. If it is not white, then some of your assumptions must be inappropriate.
Another indication is that the Kalman gain will tend to 0 as t increases. This is not a necessary
nor a sufficient condition for filter divergence. However, it indicates that less and less weight is
being given to the data and the filter may be asymptoting to an erroneous value.

How do you cope with divergence?

1. Don’t under-estimate model errors. Over-estimate them.
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2. Try to adaptively estimate model errors using innovations.

3. Overweight most recent data, thereby reducing filter memory of old data. This forces data
into the KF.

4. Put an ad hoc lower bound on the Kalman gain.

6.10 Stability of the KF

Asymptotic stability of the KF means that its solution will gradually become insensitive to its
initial conditions. One can see that observability will play a role because if there are sufficient
observations, the true state will be well approximated. Also, controllability will play a role because
if the system is not controllable in some modes, then any number of observations cannot help damp
the analysis errors.

Theorem (Jaswinski Theorem 7.4)

If the system

xk+1 = φkxk +wk

zk = Hkxk + vk

with x0, {wk}, {vk}, independent, is uniformly completely observable and uniformly completely
controllable and if P0 ≥ 0 then the discrete time KF is uniformly asymptotically stable.

What does this mean? The KF analysis may be written as

x̂a
k = (I−KkHk)φk−1x̂

a
k−1 +Kkzk.

For the unforced equation, it is easy to see that stability of the KF solution (x̂a
k remains bounded)

depends on

|(I−KkHk)φk−1|.

In fact

x̂a
k = (I−KkHk)φk−1(I−Kk−1Hk−1)φk−2 . . . (I−K1H1)φ0x̂

a
0.

Let us examine the operator:

(I−KkHk)φk−1.

Kk represents the observation accuracy, while Hk reflects the observation distribution in space.
φk−1 represents the propagation of the model from tk−1 to tk.

• For accurate, abundant observations, KkHk ≈ I. Then even for unstable dynamics, the KF
is stable.

• If the model is very stable, even with no observations (Kk = 0), the KF eventually loses
memory of the initial condition.

• If the model is unstable, sufficient observations (in terms of accuracy and coverage) are needed
to keep errors from growing.
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6.11 Generalizations of the Kalman Filter

When we derived the KF, we made a number of assumptions such as the system and measurement
noise being white in time, and uncorrelated with each other. It was noted that these assumptions
were not critical to the KF derivation. In this section, we describe modifications to the standard
KF when these assumptions are not true.

First recall the true system equation, (6.37), and the measurement equation, (6.38):

xk+1 = φkxk +Gkwk

zk = Hkxk + vk.

Here we have allowed for the system noise to be a different dimension than the state. Thus we
need a mapping from the system noise space to the model space, Gk.

6.11.1 Serially correlated measurement noise

If the measurement noise is correlated (not white) in time, then we can write

vk+1 = Ekvk + uk (6.107)

where uk is white in time and Gaussian with mean 0 and covariance Sk. Because the measurement
noise is not white, we will try to define a new measurement equation which is white. First note
that

zk+1 = Hk+1xk+1 + vk+1

= Hk+1φkxk +Hk+1Gkwk +Ekvk + uk. (6.108)

Now it is clear that

zk+1 −Ekzk = (Hk+1φk −EkHk)xk +Hk+1Gkwk + uk. (6.109)

Thus we can define a new measurement equation:

z∗k = H∗
kxk + v∗k. (6.110)

where

z∗k = zk+1 −Ekzk,

H∗
k = Hk+1φk −EkHk,

and

v∗k = Hk+1Gkwk + uk.

Note that v∗k is also white and Gaussian with mean 0 and covariance matrix, Hk+1GkQkG
T
kH

T
k+1+

Sk. With this new measurement equation, and the system equation, a KF can be defined with the
usual assumptions.
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6.11.2 Correlated system and measurement noise

What if the system and measurement noise were correlated, i.e.

< wk(vk)
T >= Ckδ

k
l .

Here wk and vk must have the same dimension. (If not, new mapping operators must be intro-
duced.) Consider the following state equation:

xk+1 = φkxk +Gkwk +Dk(zk −Hkxk − vk)

= (φk −DkHk)xk +Dkzk +Gkwk −Dkvk. (6.111)

Let us define

sk = Gkwk −Dkvk.

Now, choose Dk such that < sk(vk)
T >=0 . Thus,

Dk = GkCkR
−1
k .

Thus we have defined a new system equation for which the noise sk is uncorrelated with the
measurement noise, vk. Note that the system equation now has inputs zk.

6.11.3 Serially correlated system noise

In this case, the system noise wk is not white but is Markov:

wk+1 = Akwk + uk (6.112)

where uk is white in time and Gaussian with mean 0 and covariance matrix Sk. We can combine
the system equation and the model for system noise to get an augmented state, yT

k = [xTl w
T
k ].

Thus we can write
(

xk+1

wk+1

)

=

(

φk Gk

0 Ak

)(

xk

wk

)

+

(

0

I

)

uk (6.113)

or

yk+1 =Mkyk + G̃kuk. (6.114)

Thus we have a new system equation for which the system noise is white. However, the new state
has dimension equal to the sum of the dimensions of vectors x and w. The measurement equation
can also be written in terms of this new augmented state as:

zk = H̃kyk + vk, (6.115)

where H̃ = [Hk 0].

6.12 Nonlinear filtering

The Kalman filter is applicable to linear systems. In Earth systems science, we usually deal with
nonlinear systems so in this section we introduce a standard extension to the Kalman Filter for
nonlinear models.
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6.12.1 The Extended Kalman Filter

Consider the following stochastic-dynamic system:

xk+1 = Mk(xk) +wk (6.116)

zk = Hk(xk) + vk (6.117)

where Mk represents the model which is a nonlinear function of the state at time step k. Hk is the
nonlinear observation operator. If the model and observation operators are only weakly nonlinear,
then we can approximate them using the first two terms of a Taylor expansion:

Mk(x̄+ δx) ≈ Mk(x̄) +
∂Mk(x̄)

∂x
δx

Hk(x̄+ δx) ≈ Hk(x̄) +
∂Hk(x̄)

∂x
δx.

Here we have introduced the Tangent Linear Model (TLM),

∂Mk(x̄)

∂x
=Mk,

and the Tangent Linear observation operator

∂Hk(x̄)

∂x
= Hk.

Since the forecast step is given by:

x
f
k+1 = Mk(x

a
k), (6.118)

the forecast error evolves according to

e
f
k+1 = Mk(x

a
k)−Mk(xk)−wk

= Mk(x
a
k + xk − xk)−Mk(xk)−wk

≈ Mke
a
k −wk. (6.119)

Now, if the analysis error at step k is unbiased, then the forecast error at step k + 1 is unbiased
and the error covariance at k + 1 is

P
f
k+1 =MkP

a
kM

T
k +Qk. (6.120)

Because the forecast error evolution is described by the Tangent Linear model, the forecast error
covariance also evolves according to the TLM dynamics. Note that this equation is only valid when
the model is weakly nonlinear.

As in OI or 3DVAR with a nonlinear observation operator, the analysis step for the Extended
Kalman Filter is given by:

xa
k = x

f
k +Kk(zk −Hk(x

f
k))

KT
k = P

f
kH

T
k (HkP

f
kH

T
k +Rk)

−1

Pa
k = (I−KkHk)P

f
k
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Thus the full nonlinear model is used to obtain the innovations for the analysis equation. The gain
matrix and the analysis error covariance matrix involve the tangent linear forward model operator.

The forecast step of the Extended Kalman Filter (EKF) is summarized as:

x
f
k+1 = Mk(x

a
k)

P
f
k+1 = MkP

a
kM

T
k +Qk

with initial conditions: xa
0 = x0 and Pa

0 = P0.
An important assumption made in deriving the EKF is that model is weakly nonlinear. When

this assumption is valid, the EKF should work, but in general, the EKF is not a consistent method
for propagating the mean and covariance of the a posteriori p.d.f. To see why, we must first define
some higher order statistical moments. For components xi of vector x, the first statistical moment
is:

x̄i =< xi >

the second statistical moment is:

Pij =< (xi − x̄i)(xj − x̄j) >

the third statistical moment is:

Θijk =< (xi − x̄i)(xj − x̄j)(xk − x̄k) >

and the fourth statistical moment is:

Γijkl =< (xi − x̄i)(xj − x̄j)(xk − x̄k)(xl − x̄l) >

where the subscript indicating time step was dropped.
Now consider the nonlinear model (6.116). If we had many model integrations, the mean state

at time step k + 1 would be given by

x̄k+1 = Mk(xk).

Note that the right hand side is not the forecast of the mean state at time step k but rather the
mean of the forecasts from time step k. For a linear model, these two would be the same. Now
define the TLM, as well as higher order derivatives of the model:

Mk = ∂Mk(x̄)
∂x

Sk = ∂2Mk(x̄)
∂x2 Tk = ∂3Mk(x̄)

∂x3 .

Then the Taylor expansion for the model is:

M(x̄+ δx) = M(x̄) +Mδx+
1

2
S(δxδxT) +

1

6
T(δxδxδx) + . . .

Substitute this into the nonlinear model to get:

xk+1 = Mk(x̄k) +wk +Mkδx+
1

2
Sk(δxkδx

T
k ) +

1

6
Tk(δxkδxkδxk) + . . .

Thus the mean state at time step k + 1 is given by:

x̄k+1 = Mk(x̄k) +
1

2
SkP

a
k +

1

6
TkΘk + . . . (6.121)
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Similarly, we can derive the evolution equation for the forecast error covariance matrix by taking
the outer product of the forecast error (minus its mean) with itself. The result is:

P
f
k+1 = MkP

a
kM

T
k +Qk +MkΘkS

T
k

+
1

4
SkΓkS

T
k +

1

3
MkΓkT

T
k +

1

4
SkP

a
k(P

a
k)

TSTk

− 1

6
SkP

a
kΘ

T
kT

T
k −

1

36
TkΘkΘk

TTT
k + . . . (6.122)

Note that the evolution of the mean state and the covariance matrix involves all higher order
statistical moments. Obviously, we can’t afford to calculate all of these, so to close the system of
equations, we might choose to keep only up to the second order statistics. Thus we would drop all
terms involving Θk and Γk and higher order terms. Then the mean state and covariance evolution
would be given by

x̄k+1 = Mk(x̄k) +
1

2
SkP

a
k

P
f
k+1 = MkP

a
kM

T
k +Qk +

1

4
SkP

a
k(P

a
k)

TSTk . (6.123)

Compared to the EKF forecast equations, (6.118) and (6.120), there are extra terms not only for
the covariance propagation but also for the mean state propagation equation. Thus the EKF is
not a consistent approximation even to second order statistics. However, if the model is weakly
nonlinear so that Sk can be ignored, then the EKF forecast equations result.

The problem with the EKF forecast equations can be evident when dealing with geophysical
forecast models. The TLM is supposed to describe the evolution of forecast errors. With a nonlinear
model, error growth would saturate eventually. However, with a linear model, error growth can
continue indefinitely. When do errors grow? Error growth occurs when the model is unstable. For
atmospheric models, in the midlatitudes, this corresponds to growing baroclinic disturbances. Thus
precisely when and where we are interested in an accurate forecast, the EKF equations are incorrect.
The forecast error covariances can be overestimated and if these regions are not sufficiently well
observed, the error growth can lead to filter divergence. Gauthier et al. (1993) showed such
unrealistic error growth using the barotropic vorticity equation. Using a perfect model, the true
initial conditions and observations of u,v and φ at 500 hPa, the EKF still failed. Unbounded error
growth was found where the flow was unstable, and where there were no observations to damp the
error growth. The the EKF can diverge simply due to the presence of dynamical instabilities since
a linearized forecast error evolution was assumed.

In summary, a standard extension of the KF for weakly nonlinear models (the so-called Extended
Kalman Filter or EKF) was derived. The EKF was shown to be an inconsistent approximation to
the full nonlinear evolution equations, even to second order. However, if the nonlinear model is
weakly nonlinear, the omitted terms may be small and the EKF may work. When the model is not
weakly nonlinear, the forecast for the state may develop a bias, and the covariance evolution may
be incorrect.

6.13 Sub-Optimal Kalman Filters

The KF is designed for linear systems. In reality, we are dealing not only with nonlinear systems,
but very large and complex ones. Thus the KF is not practical. The main problem is the evolution
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of the covariance matrix. If the state is of dimension 107, then the covariance matrix has 1014

elements and propagation of this matrix in time would be impossible. Thus several people have
come up with schemes to reduce the cost of the covariance propagation equation. Because the KF
equations are altered, and therefore no longer optimal (this is not guaranteed in the nonlinear case
anyway), such scheme are called “Sub-Optimal Schemes” or SOS.

As noted above, the expensive part of the EKF is the covariance forecast:

P
f
k+1 =MkP

a
kM

T
k +Qk = P

p
k +Qk.

The expensive part of this calculation is the first term on the right side which is called the pre-
dictability term, Pp

k. To avoid matrix multiplication, this term can be rewritten as

Mk(MkP
a
k)

T.

The term in round brackets describes the evolution of columns of the analysis error covariance
matrix using the TLM. If Mk is n × n, then this involves n model integrations. Then the final
multipliation involves an addition n integrations. In total, this term involves 2n model integrations.
If n = 107, then clearly this is impractical.

In addition to the fact that the covariance evolution step is expensive, the EKF approximation
of this step is not even correct so why both evaluating this term exactly according to the EKF
equation? Finally, and most importantly, we do not have sufficient knowledge of observation and
especially model errors, so what is the point in evolving erroneous covariances exactly? All of these
arguments point to the necessity of simplifying the EKF forecast step for covariances.

One method of reducing the cost of (6.120) is to use a simpler model to propagate the forecast
errors. So, if a full NWP model is used for the analysis, use a reduced resolution model to propagate
the errors. Since we know the analysis step involves a filtering, the analysis errors may involve larger
scales anyway so using a reduced resolution model might be sufficient. This method was tried by
Cohn and Todling (1996).

Another method also due to Cohn and Tolding (1996) is the Partial singular value decomposition
(or PSKF). The idea here is to decompose the model dynamics into singular vectors and keep only
some of the most important directions. Thus,

Mk = UkDkVk

where
Uk = [UL

kU
T
k ], Vk = [VL

kV
T
k ], Dk = diag[DL

kD
T
k ].

The left and right singular vectors are Uk and Vk. The superscript L refers to the leading sin-
gular values and corresponding vectors while T refers to the trailing values and vectors. Thus the
approximation involves dropping the trailing singular values and vectors so that (6.120) becomes:

P
p
k = SkP

a
kS

T
k +PT

k

where
Sk = UL

kD
L
k (V

L
k )

T.

Another method (Partial Eigenvalue decomposition PEKF) is to use an eigenvalue decomposi-
tion of the whole prediction error covariance matrix:

MkP
a
kM

T
k =WkTkW

T
k
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where the leading and trailing eigenvalues and vectors are given by:

Wk = [WL
kW

T
k ], Tk = diag[TL

kT
T
k ].

Thus (6.120) becomes:
P

p
k =WL

kT
L
k (W

L
k )

T +TT
k .

This method is also due to Cohn and Todling (1996).
Is it better to approximate the model dynamics by keeping only a few singular vectors, or to

approximate the whole prediction error covariance matrix using a partial eigenvalue decomposition?
It depends on the model in question. If the spectrum of singular values has a steep slope so that
some values are clearly unimportant, it is easy to define the leading and trailing values. Similarly,
for the eigenvalue decomposition, if there is a steep spectrum of eigenvalues, then it is clear how
to define what the leading and trailing values are. From Cohn and Todling (1995)’s Fig. 1, the
eigenvalues vary over 10 orders of magnitude while the singular vectors vary over only 1 order of
magnitude. However they were using a simple barotropic model and these results will depend on
the model.

Another variation of the PEKF is the RRSQRT-EKF. The idea is the same as the PEKF in that
the first term of (6.120) is approximated using only the leading eigenvalues and eigenvectors. How-
ever, instead of the standard EKF algorithm, the square root (SQRT-EKF) algorithm is used. The
latter is more robust because one doesn’t have to worry about the development of non symmetric
positive definite covariance matrices (due to numerical errors). This can happen with the standard
EKF forecast equation for covariances. This algorithm is described in Verlaan and Heemink (1995).

An obvious approximation to (6.120) is to simply use a different (simpler) model to propagate
the forecast errors than was used to propagate the state. For example Dee (1991) tried propagating
the mass variable only and deriving the winds from the geostrophic relationship.

One can also try approximating the forecast error covariance by a banded matrix. However,
negative values can still result unless a square root formulation is used (Boggs et al. 1995).

In summary there are many ways to approximate the covariance forecast equation of the EKF.
All will have advantages and disadvantanges, and before one chooses a method, it is necessary to
determine the assumptions involved and whether they are valid. It should also be noted that there
are many more sub optimal schemes than have been mentioned here.

6.14 The Ensemble Kalman Filter

One of the most intriguing of the KF approximations is the so-called “Ensemble Kalman Filter”
or EnsKF. The idea behind the EnsKF is to dispense with the troublesome covariance propagation
equation of the EKF and directly evaluate the forecast error covariance matrix using an ensemble
of forecasts. Since a nonlinear model is used for the forecasts, the covariance so calculated does not
involve any linearization and hence is better than the EKF. Thus, the ensemble mean forecast is

< x
f
k >=

1

s

s
∑

i=1

x
f,i
k

and the ensemble-based forecast error covariance matrix is

P
f
k ≈

1

s− 1

s
∑

i=1

(xf,i
k − < x

f
k >)(xf,i

k − < x
f
k >)T. (6.124)
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Thus, you run not one but s analyses, using the observation set z but perturbed by a different
realization of the observation error, for each analysis. This is to ensure that the analyses are
reasonably different from each other so as to reflect an analysis error. Then you can propagate
the s ensemble members forward in time using the complete nonlinear model. No TLM or adjoint
models are required! This gives an ensemble of s forecasts which are then used to calculate Pf

k using

(6.124). This Pf
k is then used in the calculation of the Kalman gain matrix for the analysis step.

To start the EnsKF you need to generate an ensemble of s perturbations of the initial state which
are used to calculate Pf

0 . With chaotic model dynamics (as is the case for atmospheric motion),
ensemble members will diverge in time but saturate at the climatological values of forecast error.
Thus the ensemble members will grow apart with time. During the analysis step, the ensemble
spread is reduced because all members are constrained by the same observations (but with different
random errors added).

The calculation (6.124) will underestimate forecast error covariances because each member is
actually used in the calculation of its own error covariance. Thus, it is better to exclude the ith
member when calculating the ith covariance matrix:

P
f,j
k ≈ 1

s− 2

s
∑

i6=j

(xf,i
k − < x

f,j
k >)(xf,i

k − < x
f,j
k >)T. (6.125)

Thus the gain matrix for the ith member does not involve the ith member.
The appeal of the EnsKF is that it is conceptually simple but valid, requires no TLM or adjoint

models (which takes months to develop) and can be easily parallelized for MPI machines. However,
there are a few tricky points. First of all, the definition of a covariance matrix involves realizations
of forecast error while (6.124) uses the spread of forecasts about their mean to represent forecast
error. Thus there is an underlying assumption that the ensemble mean is close to the truth and
that the distribution of ensemble members about their mean truly represents the forecast error.

Because there is no assumption of weakly nonlinear dyanmics, the EnsKF can be applied to
highly nonlinear models. The EnsKF was introduced to the meteorological literature by Evensen
(1994) to avoid the EKF divergence due to dynamic instabilities. It was applied by Evensen (1997)
to demonstrate its use for low order chaotic systems.
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6.15 Problem Set 6

1. Show that Joseph’s formula,

Pa
k = (I− K̃kHk)P

f
k(I− K̃kHk)

T + K̃kRkK̃
T
k (6.126)

reduces to

Pa
k = (I−KkHk)P

f
k (6.127)

for

K̃k = Kk = P
f
kH

T
k (HkP

f
kHk +Rk)

−1. (6.128)

Kk is the optimal weight matrix called the Kalman gain. Hint: Don’t substitute for Kk using
(6.128) right away. Expand (6.126) first, then use (6.128) to simplify 1 term.
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2. Prove that < e
f
k(vk)

T >= 0, where

e
f
k+1 = φke

a
k −wk

and
ea

k = (I− K̃kHk)e
f
k + K̃kvk.

You will need to use the basic assumptions about the model and observation error made
when deriving the Kalman Filter: < vk(vl)

T >= Rkδ
k
l , < wk(vl)

T >= 0 for all k and l and

< e
f
0(vk)

T >= 0 for all k.

3. Prove that < ea
k(wk)

T >= 0, where

e
f
k+1 = φke

a
k −wk

and
ea

k = (I− K̃kHk)e
f
k + K̃kvk.

You will need to use the basic assumptions about the model and observation error made
when deriving the Kalman Filter: < wk(wl)

T >= Qkδ
k
l , < wk(vl)

T >= 0 for all k and l

and < e
f
0(wk)

T >= 0 for all k.

4. Observability and controllability. Consider the system:

ẋ =







1 2 −1
0 1 0
1 −4 3






+







0
0
1






u, (6.129)

y = ( 1 −1 1 )x (6.130)

Is it observable or controllable? Why or why not?

5. Scalar KF. Consider the following scalar system and measurement equations:

xk+1 = mxk +wk (6.131)

zk = Hxk + vk (6.132)

where the system noise wk is N (0,Q) and vk is N (0,R). Both noises are assumed to be white
in time, and uncorrelated with each other at all times, and uncorrelated with the initial state
error.

(a) Write the KF equations for this system.

(b) Remove the analysis step and obtain only 3 equations for Kk, P
f
k+1 and xf

k+1.

(c) Write a MATLAB script which integrates the KF in time. Here are some steps to help
you do this. Note that when dealing with random numbers, each random sequence
is different (unless you initialize the random number generator). Thus each time you
run your script you will get a different realization of the errors. Thus, when doing the
experiments, run the same one many times.

i. Define parameters, Q, R, m=1, H=1, the total number of time steps (50).
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ii. Define the initial conditions: xf
0 = 0, Pf

0 = 1 and xt
0 = 10.

iii. Loop in time.

A. First generate the obs by perturbing the truth using the measurement equation.
Assume an obs is available every time step.

B. Compute Kk, P
f
k+1, x

f
k+1, x

t
k+1.

iv. Plot xf
k , x

t
k and zk as a function of k.

v. Plot the KF predicted error (Pf
k)

1/2 and the actual error |xf
k − xt

k| as a function of
time step k. Also plot Kk on the same frame.

Include a hardcopy of your script, or email it to Lisa when handing the problem in.

(d) Estimation of a constant. For this case, set Q=0, R=1. Does the KF work? How do you
know? What happens to the gain Kk with time? Why? Increase the obs error variance
to R=3. Does the KF still work?

(e) Neutral dynamics. Now let Q=1, and try R=0.1, 1, 3. What happens to Kk and Pf
k as

R increases? Does the KF work? How do you know?

(f) Now consider the usual case, where our model is incorrect. Thus, the true model pa-
rameter mt=1.005 but we think (so the KF uses) m=1. Now what happens to Kk and

Pf
k as R increases? Does the KF work? How do you know? If it does not work, can you

make it work by choosing appropriate parameters values?

6. (Todling ch. 5, #9)

MATLAB exercise. Consider the following linear dynamical process

xk =

(

x1(k)
x2(k)

)

=

(

1 T
−ω2T 1− 2αT

)(

x1(k − 1)
x2(k − 1)

)

+

(

w1(k − 1)
w2(k − 1)

)

(6.133)

and the following observation process

z(k) =
(

1 0
)

(

x1(k)
x2(k)

)

+ v(k) (6.134)

for w(k) ∼ N (0,Q), v(k) ∼ N (0, r/T ) and both uncorrelated from each other at all times.
Here the (co)variance Q is given by

Q =

(

0 0
0 T

)

.

Use the following parameters to address the questions below.
ω α r T

0 -0.1 0.02 0.02

(a) Is the dynamical system stable or unstable?

(b) Using MATLAB, simulate the stochastic dynamical system from k=0 to k=500 starting

from x0 =

(

0.1
0.2

)

. Plot the state xk against k.

(c) Using the linear Kalman filter, simulate the evolution of the error covariance matrix,
starting from the initial condition Pa

0 = I, where I is the 2x2 identity matrix. Plot the
analysis error variance, in both variables, for the same time interval as in the previous item.
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(d) Is the filter stable or unstable. Explain.

(e) Are your answers to questions (a) and (d) incompatible? Explain.

(f) Plot the true state evolution together with the analysis estimate for both variables and
for the time interval in item (b). Note that your initial estimate should be a realization of
the initial state p.d.f. which is N (0,Pa

0):

xa
0 = x0 + chol(Pa

0) ∗ randn(:) .

(g) Suboptimal filters: Let us now study the behaviour of two suboptimal filters. Before start-
ing, however, you must replace the analysis error covariance equation by Joseph’s formula, if
you weren’t already using it. Recall that Joseph’s formula is valid for all gain matrices, not
just the optimal one. Thus we can use it to evaluate the performance of suboptimal filters.

(i) Assuming the calculation of the forecast error covariance is computationally too costly
for the present problem, we want to construct a suboptimal filter that somehow replaces the
calculation of Pf

k by a simpler equation. Let us first try the simple alternative, Pf
k = I. With

this choice of forecast error covariance, it is simple to see that the gain matrix becomes

K̃k = HT(HHT + r/T )−1 =
1

1 + r/T
HT

where we used explicitly that H=(1 0) for the system under consideration. Keeping the

equation for Pf
k , in your MATLAB code as dictated by the Kalman filter, replace the ex-

pression for the optimal gain by the one given above. This turns the state estimate into a
suboptimal estimate. Also, since you have kept the original expression for the forecast error
covariance evolution, and you are using Joseph’s formula for the analysis error covariance,
these two quantities provide now filter performance information due to suboptimal choices of
gains. With the “approximate” gain matrix above, is the resulting filter stable or unstable?
Explain. If this is not a successful choice of gain matrix, can you explain why that is?

(ii) Let us now build another suboptimal filter that replaces the gain by the asymptotic gain
obtained from the optimal run in item part (b). To obtain the optimal asymptotic gain, you
need to run the experiment in part (b) again, output the gain matrix at the last time step
from that run, and use it as a suboptimal choice for the gain matrix in this iterm. You should
actually make sure that the gain has asymptoted by looking at its value for a few time steps
before the last time step, and verifying that these values are indeed the same. Now run an
experiment similar to that in (i), but using the asymptotic gain for the suboptimal gains at all
time steps. Is the resulting filter stable or unstable? (Note: This choice of gain corresponds
to using the so-called Wiener filter.)

7. MATLAB: Passive advection in 1D with a Kalman filter. Let us return to the advection
problem of Ch. 3, prob. 4. This time we will run a Kalman filter, instead of an OI algorithm.

(a) Compare the codes, oi.m and kf.m. What is the difference between these two algorithms?

(b) Run the KF by typing kf(0,1,0.95,0) . The Courant number will now be fixed at 0.95

and Tfinal=1 as in the OI problem. The same three questions will be asked. Hitting ”return”
will give the default. First enter observation frequency of 5 (obs every 5 time steps), an
observation sparsity of 1 (obs at every gridpoint), and ”return” for the obs error standard
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deviation. This will give the default value of 0.02. How does the analysis compare with the
truth? Does the error estimate make sense?

(c) Now let’s make the problem a little harder. Again type kf(0,1,0.95,0) , but provide the

an obs error of 0.2. Keep the obs frequency of 5 and the obs sparsity of 1. What happened
to the analysis and the error estimate?

(d) Now let’s see what happens when there are data gaps. Type kf(0,1,0.95,0) , but answer

”return” to all questions. This gives an obs every time step, over the left half of the domain
with a std deviation of 0.02. How does the analysis fare? Now decrease the observation
frequency by typing first 2 then 5 and keeping the obs pattern and error std dev the same as
before. Now what happens to the solution? Why?

(e) Compare your OI and KF solution for parts (b)-(d). Discuss what you see.

8. KF divergence. Suppose the true (scalar) system is

xt
k+1 = xt

k +wk, (6.135)

with < wk >= 0 and < wk(wk)
T >= Qkδ

k
l , but we believe the true system is

xd
k+1 = xd

k. (6.136)

Here the superscript d refers to the “design” system. So, although the true system is corrupted
by random noise, we believe the true state is simply a constant. The initial condition is
unbiased, with variance 1. Thus,

< (ed
0) >= 0, < (ed

0)(e
d
0)

T >= 1.

The measurement equation is

zk = xk + vk. (6.137)

where < vk(vk)
T >= δk

l , < vk >= 0. Show that the design forecast error variance is

(Pf
k)

d = 1/(k + 1). Show that the actual error variance diverges as fast as k. Similarly, even
if the true system were biased, i.e.

xt
k+1 = xt

k + c,

using the above design system, show that the actual error variance diverges.
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