
Chapter 2

A brief review of probability and

statistics

In the last chapter, we have seen that data assimilation involves the combination of information
from various sources according to their accuracies. In essence, we are viewing the data sources
being random, with a particular observation being a realization of a random variable. Before we
can develop theories on how best to combine the data sources, we must first step back and review
some basic facts about probability and random variables.

2.1 Probability

Although Todling (1999) provides a very mathematical definition of probability, it is sufficient to
have an intuitive idea of the concept. The probability of an event, ω, is given by a number between
0 and 1. Let Ω be the sample space or the set of all possible events, Ω = {ω}.

Definition: A probability model consists of a specification of

1. the space Ω of all possible outcomes, one of which is ω

2. a class of subsets of Ω called events, such that if A and B are events, then so are

A ∪B, A ∩B, A′

where A′ = Ω−A is the complement of A.

3. an assignment of a number P (A) to each event A satisfies

0 ≤ P (A) ≤ 1
P (Ω) = 1

P (A ∪B) = P (A) + P (B)

if A and B are disjoint events.

Now that we have defined the probability function, P , it will be extremely useful to define a
conditional probability. Suppose an event B has occurred. The conditional probability is concerned
with the probability of A given that B has occurred.
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Figure 2.1: Conditional probability. P (A|B) = P (A ∩ B)/P (B). If event B has already occurred,
we must be in the shaded region. Then the probability of A occurring is the probability of the
striped region over the probability of the shaded region.

Definition: The probability of the event A given that B has occurred is denoted by P (B|A)
and defined by

P (A|B) = P (A ∩B)
P (B)

.

Intuitively, this makes sense. Consider Fig. 2.1. If event B has occurred, we are in the shaded
region. Then P (A|B) must be the probability of the striped region over the probability of the
shaded region.

Example 2.1 Urn

Suppose we have an urn with 4 balls, 2 red and 2 black, and we draw 2 balls without replacing
them. (1) What is the joint probability of the 1st and 2nd draws? (2) What is the conditional
probability of the 2nd ball being red given that the first one is red?

(1) There are 4 possible outcomes to the experiment. The joint probability of the two draws is
as follows:

p(Red Red) = 1
2
1
3 =

1
6

p(Blue Blue) = 1
2
1
3 =

1
6

p(Red Blue) = 1
2
2
3 =

2
6

p(Blue Red) = 1
2
2
3 =

2
6

(2) If the first draw is red, 2 blues and 1 red remain so P(red)=1/3. Another way to do this
is to let A be the event of a red on the first draw and B be the event of a red on the second draw.
Then P (B|A) = P (A ∩B)/P (A) = (1/6)/(1/2) = 1/3.
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Figure 2.2: Example of a random variable. In a game, a pointer is used. The location of the point
can be mapped to the real line by using the angle of the pointer.

2.2 Random variables

Measurements contain noise so that if an observation were repeated, different values could result.
We can use the concept of a random variable to represent this effect. A real random variable or r.v.
is simply a function which maps the set of events to the real line. More precisely, a real random
variable, x, is a real function whose domain is the space Ω such that a) the set {x ≤ x} is an event
for any real number, x, and b) the probability of the events P (x = +∞) = P (x = −∞) = 0. Note
that x is a possible value of the random variable x called a realization. We shall use the math-italic
font to indicate the realization, and the Roman font to indicate the variable.

Example 2.2 Card Game (Brown p.17)

Suppose we have a deck of cards and a game applies the following values to each card or outcome:

Card Value

2-9 0
10 10
Jack 1
Queen 2
King 3
Ace 4

Here we are mapping the sample space of {Ace, 2, 3, . . . , 10, Jack,Queen,King} to the numbers
{0, 1, 2, 3, 4, 10}. This mapping is not one-to-one.

Example 2.3 Pointer (Brown p. 18)

The outcome of an experiment is the location of a pointer (see Fig. 2.2). We can define the
location by the angle of the pointer. Then the sample space is the infinity of points on the circle.
The values that the random variable can take are [0, 2π).
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2.2.1 Probability density functions

A random variable is completely described by its probability distribution function. For a
continuous r.v., the probability distribution function, Fx(x), is given by:

Fx(x) = P (x ≤ x) =

∫ x

−∞
px(s)ds. (2.1)

(It is only continuous r.v.s that we will encounter in this course.) The function px(x) is the
probability density function or p.d.f. From this definition and the fact that 0 ≤ px(x) ≤ 1, it is
clear that Fx(x) is a non-decreasing function and that Fx(−∞) = 0 and Fx(+∞) = 1. In addition,

∫ +∞

−∞
px(s)ds = 1.

It turns out that we almost always deal with p.d.f.’s rather than with probability distribution
functions. In fact, often when we refer to an underlying distribution of a process, we are actually
speaking of the the p.d.f. of the r.v., since one may often be deduced from the other.

Example 2.4 Card game.
In the above card game example, let us assume equal probabilities for all elements in the sample

space. Then,
ω x(ω) p(x)

2-9 0 32/52
10 10 4/52
Jack 1 4/52
Queen 2 4/52
King 3 4/52
Ace 4 4/52
This is an example of a discrete r.v. where all of the possible realizations are countable. As

noted above, in this course, we will deal almost exclusively with continuous r.v.s.

Example 2.5 Pointer.
In the above pointer example, the probability of landing on any particular point is infinitessimal.

If all points are equally likely, then

Fx(θ) = P (x ≤ θ) =











0 θ < 0
θ/(2π) 0 ≤ θ < 2π
1 θ > 2π

(2.2)

is the probability distribution function. Clearly, Fx(θ)→ 0 as θ → −∞ and Fx(θ)→ 1 as θ → +∞
and Fx(θ) is a nondecreasing function of θ. The p.d.f. is given by

px(θ) =











0 θ < 0
1/(2π) 0 ≤ θ ≤ 2π
1 θ > 2π

(2.3)

This is an example of a uniform distribution function.
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2.2.2 Normal distribution

An r.v. has a normal or Gaussian distribution if its p.d.f. is given by

px(x) =
1√
2πσ

exp

[

−(x− µ)2

2σ2

]

(2.4)

where

µ =

∫ +∞

−∞
xpx(x)dx

σ2 =

∫ +∞

−∞
(x− µ)2px(x)dx.

The normal density is important because it has some very nice mathematical properties. One
important property is that the normal density is completely defined by its mean and variance and
is written

x ∼ N (µ, σ2).
Variance is a measure of dispersion about the peak so that a small σ2 corresponds to a sharp peak
while a large σ2 corresponds to a flat peak. The normal distribution is also important because it
appears quite often in practice. One possible reason for this is given by the “Central Limit Theorem”
which says that a super-position of independent random variables always tends toward normality
regardless of the individual distributions involved. Therefore, if noise is due to a superposition of
many small contributions, it may be reasonable to assume normality.

2.2.3 Moments of a distribution

It is very difficult to determine the complete p.d.f. of a random variable, in practice. Often, it may
be sufficient to determine the properties of the p.d.f. Other times, these properties may simply be
the only information which can be practically obtained.
The mean or expected value of x is

µ = E{x} =
∫ +∞

−∞
xp(x)dx.

In general, for any function, f(x):

E{f(x)} =
∫ +∞

−∞
f(x)p(x)dx.

If f(x) = xn, then

E{xn} =
∫ +∞

−∞
xnp(x)dx

defines the nth moment of x. The first moment is the mean. The nth central moment is defined by

E{(x− E(x))n} =
∫ +∞

−∞
(x− E(x))np(x)dx.

The second central moment is the variance:

var(x) = E{(x− E(x))2} = E{x2} − (E{x})2.
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The standard deviation is simply the square root of the variance:

σ =
√

var(x).

Very often it is not convenient or even possible to compute an entire p.d.f. of a random variable,
so we are content with some information about the p.d.f. such as the mean. There are, however,
other possibilities such as the median, the mid-range and the mode. The median, µ1, divides
the area under a p.d.f. in half:

µ1 =

∫ µ1

−∞
p(x)dx =

∫ ∞

µ1

p(x)dx =
1

2
.

The mid-range is simply:
µp = 0.5 ∗ [maxx(x) + minx(x)] .

The mode is the most likely value. For a p.d.f. with many peaks, there may be many modes. Such
a distribution is called multi-modal. The mode is defined by

dpx(x)

dx

∣

∣

∣

∣

x=m
= 0.

For a Normal p.d.f., the mean, median and mode are identical. For a symmetric p.d.f., the mean
equals the median. The proof of this is given in problem 2.1. For a symmetric and unimodal p.d.f.,
the mean, median and mode are identical.

Example 2.6 Pointer.
The p.d.f. for this example is

p(x) =

{

1
2π 0 ≤ x < 2π
0 otherwise

.

The mean is

E{x} =

∫ 2π

0
x
1

2π
dx =

1

2π

1

2
x2
∣

∣

∣

∣

2π

0
=
1

4π
(4π2 − 0) = π. (2.5)

The variance is

var(x) = E{x2} − (E{x})2 =
∫ 2π

0
x2
1

2π
dx− π2

=
1

2π

1

3
x3
∣

∣

∣

∣

2π

0
− π2 =

1

6π
(8π3 − 0)− π2 =

1

3
π2. (2.6)

The standard deviation is π√
3
.

2.2.4 Characteristic Functions

Another way to represent an r.v. is by its characteristic function:

φx(u) = E{eiux} =
∫ ∞

−∞
eiuxpx(x)dx. (2.7)

φx(u) is just the Fourier transform of the p.d.f. The characteristic function is especially useful in
evaluating the moments of x:

E{xn} = 1
i

dnφx(u)

dun

∣

∣

∣

∣

u=0
. (2.8)
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2.3 Multivariate random variables

Let us reconsider the simple scalar example of Chapter 1. What if we wanted to simultaneously find
the analysis of temperature at Toronto and Montreal? We could define our background information
as xb = (xbT , x

b
M )
T, where the subscripts T and M refer to Toronto and Montreal. Similarly, we’d

need an observation vector, xobs = (xobsT , xobsM )T and an analysis vector, xa = (xaT , x
a
M )
T. As in

Chapter 1, we can choose to combine our two sources of information linearly, ie.

xa = xb +W(xobs − xb). (2.9)

Note the similarity between (1.3) and (2.9). We have simply replaced scalar quantities with vectors,
and the weight is now a 2x2 matrix. Since we will interpret these quantities as random variables,
it is clear that we will primarily be dealing with multivariate random variables. In this simple
example, x refers to a single variable, such as temperature, but at different spatial locations. More
generally, x can refer to all prognostic forecast variables such as temperature, zonal and meridional
wind components, surface pressure, specific humidity. In this case, x is a vector of length equal
to the number of variables times the number of gridpoints. In this section, we will generalize the
concepts of probability density functions for vector random variables.

2.3.1 Joint density and distribution functions

The r.v.s x and y are jointly distributed if they are defined in the same probability space. The
joint p.d.f. is then pxy(x, y). The marginal densities of x and y are

px(x) =

∫ ∞

−∞
pxy(x, y)dy

py(y) =

∫ ∞

−∞
pxy(x, y)dx.

Example 2.7 Coins (Brown p30)
A sack contains 2 pennies, 1 nickel and 1 dime. Draw 1 coin and replace it. Let x be the value

of the first coin drawn. Let y be the value of the second coin drawn. What is the discrete joint
p.d.f. of x and y?

1 5 10 p(xi)

1 1
2
1
2

1
2
1
4

1
2
1
4

1
2

5 1
4
1
2

1
4
1
4

1
4
1
4

1
4

10 1
4
1
2

1
4
1
4

1
4
1
4

1
4

p(yi)
1
2

1
4

1
4

The Marginal p.d.f.s are

px(xi) =
∑

j

pxy(xi, yj)

py(yj) =
∑

i

pxy(xi, yj)

The marginal p.d.f. px(xi) represents the probability of getting a specific coin first. The probability
of getting a penny first is 1/2, from the above table, and the probability of getting a nickel or a dime
first is 1/4. Similarly, py(yj) is the probability of getting a certain coin on the second draw. Note
that in this example, pxy(xi, yj) = px(xi)py(yj).

17



x, y are statistically independent if pxy(xi, yj) = px(xi)py(yj) for all xi, yj .

Example 2.8 Darts (Brown, p35)

Let the position of a hit be given by its (x,y) coordinates. After sufficient practice, assume that
the scatter in position is unbiased in both directions. The joint p.d.f. is then

pxy(x, y) =
1

2πσ2
e−(x

2+y2)/2σ2
. (2.10)

The marginal densities are:

px(x) =

∫ ∞

−∞
pxy(x, y)dy =

1√
2πσ

e−x
2/2σ2

py(y) =

∫ ∞

−∞
pxy(x, y)dx =

1√
2πσ

e−y
2/2σ2

.

The expectation of the product of two r.v.s is of special interest:

E(xy) =
∫ ∞

−∞
xypxy(x, y)dxdy. (2.11)

If x and y are independent, then

E(xy) =
∫ ∞

−∞
xpx(x)dx

∫ ∞

−∞
ypy(y)dy = E(x)E(y). (2.12)

If E(xy) = E(x)E(y), then x, y are uncorrelated.
If x, y are independent, then they are uncorrelated.

If x, y are uncorrelated, this does not mean that they are independent.

If E(xy) = 0, x and y are said to be orthogonal.
The covariance of x and y is

cov(x, y) = E{(x− µx)(y − µy)}.

The correlation coefficient is defined as

ρ =
E{(x− µx)(y − µy)}

√

E{(x− µx)2}
√

E{(y − µy)2}
.

Note that if x=y, then ρ=1, and if x=-y, ρ=-1. If x and y are uncorrelated, then

E{(x− µx)(y − µy)} = E{xy − µxy − µyx + µxµy}
= E{xy} − µxµy − µyµx + µxµy

= E{x}E{y} − µxµy

= µxµy − µxµy

= 0. (2.13)

Thus if x and y are uncorrelated, then ρ=0.
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2.3.2 Transformation of random variables

In data assimilation we are primarily dealing with 2 random variables, the model state, x, and
the observations, y. In order to combine this information, we are going to need to compare these
quantities. The relation between the two is defined by the measurement equation:

y = H(x).

H is the observation operator and it maps the model state to the observed variables. For example,
the model state variables might include wind and temperature, but the observed variables might
be radiance or backscatter. Now with this relationship, and the knowledge of the p.d.f. of one of
these variables, how can one deduce the p.d.f. of the other one? In this section, we answer this
question for the case of two jointly distributed scalar variables.

If y = f(x) and we know the p.d.f. of x, what is the p.d.f. of y? Consider Fig. 2.3. We know
that

P (x0 ≤ x ≤ x0 +∆x) = P (y0 ≤ y ≤ y0 +∆y).

Thus relating this to densities gives

∫ x0+∆x

x0

px(x)dx =

{

∫ y0+∆y
y0

py(y)dy if ∆y > 0
∫ y0
y0+∆y

py(y)dy = −
∫ y0+∆y
y0

py(y)dy if ∆y < 0
(2.14)

Combining this information, and equating the integrands, we can write

px(x)dx = py(y)|dy| (2.15)

or equivalently,

py(y) = px(x)

∣

∣

∣

∣

∣

df−1(y)
dy

∣

∣

∣

∣

∣

. (2.16)

Thus to convert the p.d.f. of x to a p.d.f. of y, simply write the p.d.f. of x in terms of y and
multiply by the jacobian of the transformation.

Example 2.9 If x is N (0, σ2) find the p.d.f. of y where y = x3. Since x = y1/3 we have that

|dx/dy| = |1
3
y−2/3| = 1

3y2/3
.

Thus we can immediately write that

py(y) =
1

3y2/3
1

σ
√
2π

e−x
2/(2σ2)

=
1

3y2/3
1

σ
√
2π

e−y
2/3/(2σ2).

Thus although x is normally distributed, y is not. A nonlinear transformation of a Gaussian is not
necessarily a Guassian.
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Figure 2.3: Transformation of a random variable. Given the p.d.f. of x and the relation y=f(x),
what is the p.d.f. of y? For a small variation ∆x about a point, x0, the corresponding variation
of y can be deduced using y=f(x). The top panel corresponds to the case where ∆y > 0 while the
bottom panel is for the case that −∆y < 0.
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Example 2.10 Darts

Recall from example 2.8 involving a dart game, the probability of the hit location was

pxy(x, y) =
1

2πσ2
e−(x

2+y2)/2σ2
.

This is a special case of a bivariate Normal density where the two variates have 0 means and equal
variances. What is the p.d.f. in polar coordinates?

We have that

x = r cos θ

y = r sin θ

The Jacobian of the transformation is

J

(

x, y

r, θ

)

=

∣

∣

∣

∣

∣

∂x
∂r

∂y
∂r

∂x
∂θ

∂y
∂θ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

cos θ sin θ
−r sin θ r cos θ

∣

∣

∣

∣

∣

= r. (2.17)

Now, for an closed contour C in the x-y plane we have that

∫ ∫

C
pxy(x, y)dxdy =

∫ ∫

C′
pxy(x(r, θ), y(r, θ))J

(

x, y

r, θ

)

drdθ =

∫ ∫

C′
prθ(r, θ)drdθ. (2.18)

On equating the integrands of the last equality, we deduce that

pxy(x(r, θ), y(r, θ))J

(

x, y

r, θ

)

= prθ(r, θ). (2.19)

Substituting for our given p.d.f. gives

prθ(r, θ) =
r

2πσ2
e−((r cos θ)

2+(r sin θ)2)/(2σ2)

=
r

2πσ2
e−r

2/(2σ2). (2.20)

The marginal distributions are

pr(r) =

∫ 2π

0

r

2πσ2
e−r

2/(2σ2)dθ =
r

σ2
e−r

2/(2σ2), (2.21)

pθ(θ) =

∫ ∞

0

r

2πσ2
e−r

2/(2σ2)dr =
1

2π
(−e−r2/(2σ2))

∣

∣

∣

∣

∞

0
=
1

2π
. (2.22)

Thus similar, independent zero mean Normal densities in x, y correspond to Rayleigh and uniform
densities in the r, θ domain. How do we interpret this, in terms of the dart game? Because the
player is very good and there was no bias in the hit location in either x or y, the probability of
hitting a particular angle is the same as that for any other angle between 0 and 2π. The probability
of hitting the bullseye is identically zero. The probability of hitting within a radius r increases as
r increases until r becomes infinite. Of course, the probability of hitting within an infinite distance
of the bullseye is 1. When r< σ, the probability increases almost linearly with distance. When r=σ
the rate of increase in probability diminishes.
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2.3.3 Vector Notation

Let us define an n-vector, x as
x = (x1, x2, . . . , xn)

T.

A realization of the random vector, x is then

x = (x1, x2, . . . , xn)
T.

As noted in Todling (1999), all of the previous definitions can be written in vector notation. For
example, the p.d.f. is

px(x) = px1x2...xn(x1, x2, . . . , xn).

The probability distribution is

Fx(x) =

∫ x

−∞
px(x

′)dx′

=

∫ x1

−∞
. . .

∫ xn

−∞
px1...xn(x

′
1, . . . , x

′
n)dx

′
1 . . . dx

′
n. (2.23)

The probability density function is defined as the derivative of the distribution function:

px(x) =
∂nFx(x)

∂x
=

∂nFx(x)

∂x1 . . . ∂xn
. (2.24)

The expected value of the random vectors is defined as

E(x) = (E(x1), . . . , E(xn))T.

The covariance matrix is formed by the outer product of the vector x− E(x) with itself:

Px = E{(x− E(x))(x− E(x))T} (2.25)

or, in more detail,

Px =













var(x1) cov(x1, x2) . . . cov(x1, xn)
cov(x2, x1) var(x2) . . . cov(x2, xn)

...
...

. . .
...

cov(xn, x1) cov(xn, x2) . . . var(xn)













. (2.26)

Although there are any number of higher order moments, in practice, they are difficult to estimate
so we usually deal only with the first two moments: the mean and covariance. If one were to
consider a model state for a forecast model, then x could be of dimension 107 (assuming 5 variables,
200x400x28 gridpoints). The covariance matrix would then be 107 x 107! Computationally this is
very difficult to handle. Moreover, given the number of observations typically available in 6 hours,
we could not determine all of the matrix elements. Thus, in practice we try to simplify or model
the forecast error covariance to reduce the number of parameters to estimate to a number small
enough to be determined from the available observations.
Note that the covariance matrix is a symmetric, positive definite matrix. The positive definite

part means that
yTPxy > 0, ∀y ∈ Rn.
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It is not hard to prove that a covariance matrix P is positive semi-definite. The following proof is
from Daley (1991), pg. 418.

Definition: A matrix P (n× n) is positive definite if for all y (n× 1),

yTPy > 0.

P is positive semi-definite if for all y,

yTPy ≥ 0.
To complete the proof, expand the expression in terms of components of the vector, y =

(y1, y2, . . . , yn)
T:

yTPy =
n
∑

i=1

n
∑

j=1

yiPi,jyj

=
n
∑

i=1

n
∑

j=1

yiE[(xi − E(xi))(xj − E(xj))]yj

=
n
∑

i=1

n
∑

j=1

E[yi(xi − E(xi))(xj − E(xj))yj ]

= E[
n
∑

i=1

n
∑

j=1

yi(xi − E(xi))(xj − E(xj))yj ]

= E[|
n
∑

i=1

yi(xi − E(xi))|2]

≥ 0.

The interesting thing about real, symmetric positive semi-definite matrices is that they have some
nice mathematical properties. Specifically, their eigenvalues are real and non-negative. This fact
will be used later on.

Since Gaussians will be used often in this course, it is useful to note the multivariate Gaussian
distribution. If x, an n-vector, is N (µ,P), its p.d.f. can be written as

px(x) =
1

(2π)n/2|P|1/2 exp
[

−1
2
(x− µ)TP−1(x− µ)

]

. (2.27)

In general, the joint characteristic function can be written as

φx(u) = E(exp(iuTx)). (2.28)

Todling (1999) p. 10 shows that for a multivariate Gaussian, the characteristic function is

φx(u) = exp(iu
Tµ− 1

2
uTP−1u). (2.29)

As noted above, it will be very useful to find the p.d.f. of a vector y given the p.d.f of x and
the relationship between the two, y = f(x):

py(y) = px(f
−1(y))|Jac(f−1(y)|. (2.30)
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2.3.4 2D Multivariate Gaussian

Because of the importance of Gaussian densities in this course, let us examine a special (simple)
case of a multivariate Gaussian— when the vector has dimension 2. Thus, let x = (x, y)T. First,
recall the definition of the Gaussian p.d.f.:

px(x) =
1

(2π)n/2|P|1/2 exp
[

−1
2
(x− µ)TP−1(x− µ)

]

. (2.31)

Now let’s expand to find the covariance matrix in detail.

P = E
{(

x− µx
y − µy

)

(x− µx, y − µy)

}

=

[

var(x) cov(x, y)
cov(x, y) var(y)

]

=

[

σ2x ρσxσy
ρσxσy σ2y

]

. (2.32)

The determinant of P is
|P| = σ2xσ

2
y − ρ2σ2xσ

2
y = (1− ρ2)σ2xσ

2
y

so that the inverse of P is

P−1 =
1

(1− ρ2)σ2xσ
2
y

[

σ2y −ρσxσy
−ρσxσy σ2x

]

=
1

1− ρ2

[ 1
σ2
x

− ρ
σxσy

− ρ
σxσy

1
σ2
y

]

(2.33)

and the argument of the exponent in (2.31) (apart from a scalar) is

(x− µ)TP−1(x− µ) = (x− µx, y − µy)
1

1− ρ2

[ 1
σ2
x

− ρ
σxσy

− ρ
σxσy

1
σ2
y

](

x− µx
y − µy

)

=
1

1− ρ2

[

x−µx

σ2
x
− ρ(y−µy)

σxσy
−ρ(x−µx)

σxσy
+
y−µy

σ2
y

]

(

x− µx
y − µy

)

=
1

1− ρ2

[

(x− µx)
2

σ2x
− 2ρ(x− µx)(y − µy)

σxσy
+
(y − µy)

2

σ2y

]

. (2.34)

Finally, we can write the p.d.f. as

pxy(x, y) =
1

2π
√

1− ρ2σxσy
exp

{

− 1

2(1− ρ2)

[

(x− µx)
2

σ2x
− 2ρ(x− µx)(y − µy)

σxσy
+
(y − µy)

2

σ2y

]}

.(2.35)

Now we can easily see that if x and y are uncorrelated, ρ=0, so that pxy(x, y) = px(x)py(y), i.e. x
and y are independent. In general, uncorrelated x and y are NOT independent, but in the special
case that they are both Gaussian then they are independent. While this is easy to see here for the
2-dimensional case, Todling (1999) proves this fact for the n-dimensional case.
Clearly, Gaussian p.d.f.s have a number of nice properties that we will take advantage of, later

on. If x is Normal or Gaussian,

• its p.d.f. is completely specified by its mean and covariance,
• if 2 Normal r.v.s are uncorrelated, they are also independent,
• A linear transformation of Normal r.v.s leads to normal r.v.s (see Exercise 4). If x is
N (µx,Rx) and y = Ax + b then y is N (µy,ARxA

T) where µy = Aµx + b and ARxA
T

is a diagonal matrix. This means that we can find a matrix A that produces new r.v.s which
are statistically independent.

• All marginal and conditional densities associated with variates are also Normal (see Todling
(1999) ch. 2).
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2.3.5 Conditional Expectation

We now extend the concept of conditional probabilities to that of conditional probability densities.
If x and y are r.v.s, the conditional probability of x given that y has occurred is:

px|y(x|y) =
pxy(x,y)

py(y)
. (2.36)

Similarly, we have that

py|x(y|x) =
pxy(x,y)

px(x)
. (2.37)

Combining (2.36) and (2.37) gives the very important Bayes Rule:

px|y(x|y) =
py|x(y|x)px(x)

py(y)
. (2.38)

Bayes rule is very important because in data assimilation, we often know the p.d.f. of the obser-
vation error but would like to infer the p.d.f. of the model state. We can now define a conditional
expectation as

E(x|y) =
∫ ∞

−∞
xpx|y(x|y)dx. (2.39)

The marginal p.d.f. is given by

px(x) =

∫ ∞

−∞
pxy(x,y)dy =

∫ ∞

−∞
px|y(x|y)py(y)dy. (2.40)

Note that the unconditional mean is

E(x) =

∫ ∞

−∞
xpx(x)dx

=

∫ ∞

−∞

∫ ∞

−∞
xpxy(x,y)dydx

=

∫ ∞

−∞

∫ ∞

−∞
xpx|y(x|y)py(y)dydx

=

∫ ∞

−∞
py(y)dy

∫ ∞

−∞
xpx|y(x|y)dx

=

∫ ∞

−∞
E(x|y)py(y)dy

= E (E(x|y)) . (2.41)

The equality:
E(x) = E (E(x|y)) (2.42)

is called the Chain Rule for conditional expectation.
The conditional covariance matrix is given by

Px|y =< (x− < x|y >)(x− < x|y >)T|y > .

Note that we have introduced a new shorthand for the expectation operator, namely, the triangular
brackets. Thus,

E(x) =< x > .
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Appendix: The Gamma Function

The Gamma function is defined as

Γ(n) =

∫ ∞

0
e−xxn−1dx. (2.43)

For integer n, it is easy to show that

Γ(n+ 1) = nΓ(n). (2.44)

Simply evaluate (2.43) for n+ 1, then integrate by parts.

Γ(n+ 1) =

∫ ∞

0
e−xxndx

= −xne−x
∣

∣

∞
0 + n

∫ ∞

0
e−xxn−1dx

= nΓ(n). (2.45)

Also, by recursively substituting (2.44), one can obtain:

Γ(n+ 1) = nΓ(n)

= n(n− 1)Γ(n− 1)
= n(n− 1)(n− 2)Γ(n− 2)
= n(n− 1)(n− 2) . . . (2)(1)Γ(1)
= n(n− 1)(n− 2) . . . (2)(1)
= n! (2.46)

Finally, note that we can directly evaluate the Γ function for non-integer values. As an example,
we evaluate Γ(1/2).

Γ(
1

2
) =

∫ ∞

0
e−x

1√
x
dx (2.47)

With the change of variables,

x =
1

2
y2,

the above can be written as

Γ(
1

2
) =

∫ ∞

0
e−

y2

2

√
2

y
ydy

=
√
2

∫ ∞

0
e−

y2

2 dy

=

√
2

2

∫ ∞

−∞
e−

y2

2 dy

=

√
2
√
2π

2

[
∫ ∞

−∞

1√
2π

e−
y2

2 dy

]

=
√
π. (2.48)

To obtain the third line, we used the fact that the integrand is symmetric. To obtain the 4th line,
we manipulate the integrand to look like a Gaussian p.d.f. N (0, 1) which we know integrates to 1
over the interval [−∞,∞].
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2.4 Problem Set 2

1. Prove that for an arbitrary symmetric p.d.f., the mean equals the median. Note that if p(x)
is symmetric about x = c, then

p(c− x) = p(c+ x). (2.49)

Also note that based on the definition of a median, c is a median:

∫ c

−∞
p(x)dx =

∫ ∞

c
p(x)dx = 1/2. (2.50)

Hint: Start with the definition of a mean, µ, split the integral into two intervals and choose
appropriate changes of variables in order to use (2.49).

2. a) Consider a Gaussian variable, x, with mean µ and variance σ2. Let y = ax + b. What is
the pd.f. of y?

b) Show that the linear transformation of a normally distributed vector is also normally
distributed. That is, show that for a given normally distributed vector x, with mean µx and
covariance Rx, the linear transformation

y = Ax+ b

produces a normally distributed vector y with mean µy = Aµx + b and covariance Ry =
ARxA

T .

3. Consider a random variable that is the sum of the squares of n independent normal random
variables, all of which are N (0, 1). The parameter n is any positive integer. Such a sum of
squares random variable is called a chi-square random variable with n degrees of freedom.
The p.d.f. associated with a chi-square random variable x is

px(x) =

{

x(n/2−1)e−x/2

2n/2Γ(n
2
)

, x > 0

0, x ≤ 0
(2.51)
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where
Γ(n) = (n− 1)!

refers to the Gamma function. The mean and variance of x are

E(x) = n, var(x) = 2n.

a) Plot the chi-squared p.d.f. for n=1,2 and 4. How well do these curves ressemble Gaussian
p.d.f.s? (A qualitative answer is sufficient.) b) Plot the chi-squared p.d.f. for n=16 against a
Normal p.d.f., N (16, 32). How well does this curve approximate a Gaussian p.d.f.? Note that
a chi-square random variable for n = 1 is far from Gaussian. Explain (in at most 2 sentences)
the results of this exercise in the context of the central limit theorem. MATLAB hints: Write
5 MATLAB scripts of 1 line each defining the chi-squared r.v. for each of n=1,2,4, 16, and
for the Gaussian pdf. Then run the following script to plot these using:

x=.25:.25:10;

plot(x,chisq1(x),x,chisq2(x),x,chisq4(x))

title(’Press ENTER to Continue’)

pause

x=0:.5:40;

mn=16

sigma=sqrt(32)

plot(x,gauss(x,mn,sigma),x,chisq16(x))

The script names should end in ”.m”. As an example, here is chisq1.m

function y=chisq1(x)

y=(1/sqrt(2*pi)).*((x).^(-.5)).*exp(-.5.*x)

Note that a dot before an operator indicates a matrix operation.

4. Consider the following three distributions:

1) Uniform:

px(x) =

{

1
2 , if 0 ≤ x ≤ 2
0, otherwise

(2.52)

2) Triangular:

px(x) =











xh
a , if 0 ≤ x ≤ a
h(b−x)
b−a , if a < x ≤ b

0, otherwise

(2.53)

where a = (3−
√
5)/2, b = (3 +

√
5)/2, h=2/b.

3) Gaussian, where x is N (1, 1/3):

px(x) =
1

√

2π/3
exp

{

−3(x− 1)
2

2

}

(2.54)

a) Plot these curves for x=0:0.01:3.0 .
b) What is the mean and variance for each distribution?
c) What does knowledge of the mean and variance of an unknown distribution tell you about
it?
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5. Consider the following three distributions:

1) Uniform:

px(x) =

{

1
2
√
3
, if −

√
3 ≤ x ≤

√
3

0, otherwise
(2.55)

2) Triangular:

px(x) =















(
√
6+x)
6 , if −

√
6 ≤ x ≤ 0

(
√
6−x)
6 , if 0 < x ≤

√
6

0, otherwise

(2.56)

3) Gaussian, where x is N (0, 1):

px(x) =
1√
2π
exp

{

−x
2

2

}

(2.57)

a) Plot these curves for x=-4.0:0.1:4.0 .

x=-4.0:.1:4.0;

plot(x,uniform(x),x,triang(x),x,gauss(0,1,x))

The script names should end in ”.m”. As an example, here is gauss.m

function y=gauss(mean,sig,x)

n=size(x,2);

y=zeros(1,n);

y=(1/sqrt(2*pi*sig)).*exp(-0.5.*((x-mean)/sig).^2);

Note that a dot before an operator indicates a matrix operation.

b) What is the mean and variance for each distribution? Calculate this by hand, not numer-
ically.
c) The MATLAB function RAND(n,1) generates n samples from a uniformly distributed r.v.
in the interval (0,1). Using this, generate n samples of the uniform p.d.f. in (1). Plot the
sample p.d.f. for a number of different n’s. What is a value of n that will produce a good
discription of the true p.d.f.? Use hist(y,x) to produce a histogram of function y over the
x-grid.
d) Repeat part (c) except for the normal distribution using the MATLAB function RANDN.

6. The log-normal distribution is defined by

pX(x) =
1√
2πs

1

x
exp

[

− 1

2s2

(

ln
x

x0

)2
]

Show that:
(a) its mean and variance are

µ = x0e
s2/2

var(x) = x20e
s2(es

2 − 1)
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respectively;
(b) introducing the variable

x∗ = β ln(
x

γ
)

the probability density function pX(x) above can be converted to a Gaussian probability
density function pX∗(x∗) of the form

pX∗(x∗) =
1√
2πσ

exp

[

−(x
∗ − x∗0)

2

2σ2

]

where σ = sβ, and

x∗0 = β ln(
x0
γ
).

This justifies the name log-normal distribution for pX(x), since the logarithm of its variable
is normally distributed.

7. Consider the bivariate Gaussian p.d.f.:

pxy(x, y) =
1

2π
√

1− ρ2σxσy
exp

{

− 1

2(1− ρ2)

[

(x− µx)
2

σ2x
− 2ρ(x− µx)(y − µy)

σxσy
+
(y − µy)

2

σ2y

]}

.

a) Show that the marginal densities px(x) and py(y) are Gaussian. It is sufficient to show
that px(x) is Gaussian and note the symmetric roles of x and y in the definition of pxy(x, y).
b) Show that the conditional p.d.f. of px|y(x|y) is N (µx|y, σ2x|y) where µx|y = µx + ρσx(y −
µy)/σy and σ

2
x|y = σ2x(1− ρ2).
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