Chapter 1

Introduction

1.1 What is data assimilation?

Loosely speaking, data assimilation may be simply viewed as a method of combining observations
with model output. Why do we need data assimilation? Why not just use the observations? While
the observations represent an estimate of the current reality, the problem is that we often want to
predict the future. For that we need models. But when models are not constrained periodically by
reality, they are of little value. Therefore, it is necessary to fit the model state as closely as possible
to the observations, before a prediction is made.

When viewed as a method of simply combining different data sources (from observations and
from model outputs), data assimilation can be seen as a least squares or regression problem. The
method of least squares dates back to Gauss, who may be viewed as the father of estimation theory.

How should different data sources be combined? Well, if one is more accurate than the other,
then the more accurate one should be given more weight. If we need to know the accuracy of
the data sources, then we need to know something about the stochastic processes that produced
the data. Since the data (model and observations) have errors, the underlying processes must be
stochastic and not deterministic. Thus data assimilation can also be examined from the point
of view of stochastic processes, signal processing or time series analysis. That is, assuming the
observed and model variables are the same, the problem may be viewed as one of trying to extract
a signal from noisy time series. However, the time series of atmospheric states are incompletely
observed, so some interpolation is required to map the signal to the model grid. Thus two basic
aspects of data assimilation are: filtering and interpolation.

It is clear that data assimilation can be studied from many viewpoints: estimation theory,
signal processing, inverse theory, control theory, etc. Works in a particular field often share a
similar vantage point. In this course, we will examine data assimilation from the point of view of
estimation theory. As with the other viewpoints, estimation theory has a strong mathematical basis.
I have chosen to follow this route because estimation theory naturally leads to the development
of the Kalman filter, from which it is easy to derive other methods of data assimilation used in
environmental applications.

A primary goal of data assimilation is to produce an “analysis”, a model state that closely
fits the observations. Thus the analysis should be provided on the model basis (grid or spectral
coefficients, for example). The analysis can be used for diagnostic purposes, such as pollution mon-
itoring or budget calculations. In Numerical Weather Prediction (NWP) centres, it is also used for
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initiating a forecast. In this case, the analysis should also be compatible with the model dynamics,
i.e. be somewhat balanced (some low Rossby number balance) so that the impulsive insertion of
the analysis does not result in the generation of spurious gravity wave energy. This process of
balancing the initial state is called initialization. A perfect analysis of the real atmosphere might
not be compatible with the equations of the numerical forecast model. For example, the model
might be hydrostatic, whereas the real atmosphere can be locally nonhydrostatic. Initialization
adjusts the analysis to be compatible with the model. It should be noted that the term “data
assimilation” typically includes the process of initialization. However, initialization will not be
explicitly addressed in this course, so the interested reader is referred to Daley (1991) for a good
introduction to the problem of initialization.

1.2 Examples

1.2.1 Navigation

One of the earliest applications which embraced the Kalman filter (newly developed in 1962) was
that of designing navigation systems. It is still an important application of the Kalman filter. In a
typical, self-contained navigation system, observations are collected and used to produce velocity
corrections. The navigation system may be on board a rocket to Mars, a satellite in orbit, a missile
over the arctic, a ship at sea or a car. A recent application is the navigation systems using GPS
information that provide verbal directions to a car’s driver. This type of application typically deals
with linear models of small dimension (less than 100). For this type of problem, the Kalman filter
is ideal.

1.2.2 Remote sensing

Remote sensing is the indirect measurement of atmospheric parameters from a distance. Satellite
data retrievals are important products of space borne instruments. Typically, the actual measure-
ment, say, the radiation at the top of a column of atmosphere, is nonlinearly related to the retrieved
product, (a vertical temperature profile in this case). Moreover, there is no unique solution— many
possible temperature profiles could result in the same measurement. Therefore, using some back-
ground information, such as a model forecast, the observations are combined with the background
to produce a retrieval. Methods used include statistical interpolation and variational methods.
The models that relate the measured variables to the retrieved variables are usually nonlinear. The
dimension of the problem need not be large, but it can be. (See Houghton et al. (1984) for some
examples.)

1.2.3 Geophysics

I don’t know much about geophysical applications except that inverse theory is an important area
of geophysics. There is a text on inverse theory by Tarantola (1987) that is useful for atmospheric
as well as geophysicists. The type of problem encountered is when seismic activity is recorded and
used to retrieve the structure or velocities within the Earth. The data is then arrival times and the
retrieved quantities are densities or velocities.



1.2.4 Pollution source estimation

This is a very new and exciting application of data assimilation. Measurements of pollutants that
are released into the atmosphere are very approximate, relying on information from industry and
empirical models. If an industrial plant suddenly releases a pollutant, could we use observations of
atmospheric constituents to trace the original source of the release? An obvious example is a nuclear
accident that has not been reported. If the chemicals are inert, acting effectively like passive tracers,
then Kalman smoothers or Four-Dimensional variational methods can be used to trace the original
source. Recent examples include Pudykiewicz (1998), Zhang and Heemink (1996), Mulholland and
Seinfeld (1995), and Robertson and Persson (1992). The model is typically a pollutant transport
model with or without nonlinear chemistry. The data are measurements of mixing ratio. The
problem is very underdetermined (not enough data), the models are usually large, complex and
nonlinear.

1.2.5 Weather forecasting

Data assimilation has been used to obtain an initial state for integrating a numerical weather
prediction model since the 1970’s. Early methods included statistical (or optimal) interpolation
and analysis corrections. In the 1990’s, variational methods became increasingly preferred. With
the time evolution of forecast error statistics, these methods become sub-optimal Kalman filters.

The literature in data assimilation for NWP (Numerical Weather Prediction) is very extensive,
so I shall only refer to a few recent review articles. A good introduction is found in Daley (1991).
Ghil and Malanotte-Rizzoli (1991) provide an overview of atmospheric and oceanic data assimila-
tion. There are many nice introductory articles in the special issue of the Journal of Meteorological
Society of Japan (1997).

Because my own background is in data assimilation for NWP, we shall often view the problem
from this perspective. Although this is somewhat restrictive, the fact that other fields often follow
the developments in the NWP field suggest that the NWP field is sufficiently advanced to serve as
an example.

NWP models are very large, complex and nonlinear. Model states are typically on the order of
108 or 107. Scales of interest range from hours to two weeks. Physical processes such as radiation,
boundary layer, and convection are included through complex parameterizations. Apart from the
nonlinearity of the dry dynamics (nonhydrostatic primitive equations), the physical parameteriza-
tions are also highly nonlinear.

1.3 Underdeterminacy

One of the basic aspects of data assimilation problems for environmental applications is their
underdeterminacy with respect to the observation set. Let us examine the NWP problem to
illustrate this fact. The typical size of a model state vector is given by the number of gridpoints in
the horizontal times the number of levels times the number of prognostic variables. Using current
values from the Canadian Meteorological Centre’s operational global forecast model (GEM), we
obtain:



X - State vector
‘model ‘xxyxzxvar.’

CMC global | 400 x 200 x 28 x 4 |

TOTAL = Nx | 9 x 10° |
On the other hand, what observations do we have? Of course it varies with time, so let’s take
some very rough estimates of what is used in a random 6-hour interval.
Y - Observation vector

‘ data ‘ rep. x item x level ‘
sondes 1000 x 5 x 15
satem 1000 x 2 x 15
SM, ship, buoy | 1000 x 5
aircraft 2000 x 3
sat. winds 2000 x 2
TOTAL = Ny | 1.2 x 10°

Now it is quite clear the number of knowns (observations) is far smaller than the number of
unknowns (model state).

Although this estimate is rather rough, the conclusion is valid for most large scale environmental
applications. It is obvious that we cannot simply interpolate from the observations to the model
state. The problem of determining the model state is grossly underdetermined. While we can hope
that in the future, there will be many more observations, particularly from satellite instruments,
computers keep improving in speed and memory so that the models keep growing to fit the available
resources. The underdeterminacy problem will likely be with us for a long time.

In the rough estimate above, no account was taken of the spatial distribution of the obser-
vations. In reality, where there is lots of data (e.g. over North America) the problem may be
overdetermined, and where there is sparse data (the tropics, southern hemisphere, the oceans) it
will be underdetermined. Overall though, the problem is generally underdetermined.

How do we deal with the underdeterminacy problem? The obvious solution is to add more
information. We can use prior information such as a model forecast. Another possibility is to
analyse only certain scales of motion (e.g. large scales) assuming that nonlinear scale interactions
will allow the smaller scales to be automatically developed. A third possibility is to consider obser-
vations over a time period. If the flow is largely advected, information can be spread downstream.
If we have an accurate model of the flow’s evolution, then all the data in a time interval can be
assimilated while the unknowns still remain the same size (the model state at the beginning of the
time interval).

1.4 What is the truth?

If we are going to separate the signal from the noise, in data assimilation, we must first decide
what the signal is. Let s¢ be an estimate of a signal, s, which is in error and let s* be the truth or
true atmospheric signal:

s¢(x,y, 2, 1) = s'(z,y, 2, 1) + €7%(2,y, 2, 1) (1.1)
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where s! is the “true” state and €™ is the measurement error. In this course, measurement error

is defined as the sum of errors associated with the measurements provided to the data assimilation
system. Since our forecast model is not perfect, what we really want to know is the component of
the truth that this model can resolve. Thus, we want the projection of the truth onto our discrete
model basis. Let’s call this s. Then, the estimate of the signal can be written as:

s(z,y,2,t) = s(x,y,2,t)+ st(a:, y,z,t) — s(z,y, z,t) + €% (z,y, 2, t)
= S(m7y7z7t)+€0bs(x7yazat) (12)
where
eObS(az,y, z,t) = st(x,y, z,t) — s(x,y, z,t) + €% (z,y, 2, ).

Thus, in this course, we choose the signal to be the projection of the truth onto the model basis.
Therefore the definition of signal or truth will depend upon the problem and the error °b®
include both measurement and representativeness errors. These two errors are usually lumped
together and called observation error. Thus, representativeness error here refers to the error of
representing the model state on a discrete grid as well as the error in interpolating from the model
grid to the observation locations. In this section, we have assumed that the observed and model
variables are the same. When this is not the case, representativeness error will also include the
error of mapping the model variable to the observed one. This is discussed more fully in Ch. 3,
section 3.3.

will

1.5 A Scalar Example with a single observation

To get a general feeling for what data assimilation is all about, let’s start with a simple example.
The simplest one consists of the estimation of a scalar quantity, say the temperature or ozone
mixing ratio at a point in space. This simple example has been used many times in many articles
(such as the review articles listed above). The example below comes from Daley (1991), chapter 4.6.
Let us assume we also have another source of information, say a model forecast of the variable at
the same time and location as the observation. In data assimilation, this is called the background,
trial field or first guess field. In data retrieval, this information is called an a priori estimate.
We can combine these two sources of information linearly, weighting the observations by W:

x® = xb + W(x°P — x%). (1.3)

The superscripts a and b refer to the analysis and background variables. Now consider the errors
involved in this problem. To do that we must first define a truth. We always assume that the truth
(the true value of the variable) exists, but that it is unknown and unknowable. (Even if we had
a direct observation of the truth, the instrument would have some measurement error associated
with it, so we would still only have an estimate of the truth. So the truth is a theoretical concept.)
Subtract the true state from both sides of (1.3).

x¢ —xt = x% —xt + W(xP —x! —x¥ +xt)

The true state has superscript ¢. If we define the errors as:

@ = x*—x
6b — Xb —xt
6obs _ Xobs - Xt



then the analysis equation can be written as:
€ = b + W(e — &) (1.4)
If we had many possible realizations of these errors, then we could take an ensemble average:
<@ >=< > FW(< e > - < b >,

If we assume that the errors are unbiased, that is, < €® >=< % >= 0, then < €* >= 0. Thus, if
the observation and background errors are unbiased, so is the analysis.

How do we determine the weight W? Obviously, we must use the information that we have.
We've already incorporated the data sources, x* and x® into our estimate. We’ve used information
about the biases of the errors. Now let us consider using the variances of errors of the data sources
by forming an expression for the analysis error. Square (1.4) and take an ensemble average:

< (€92 >=< ()2 > +W? < (%P — €")? > 42W < (P — %) > .

We would like the analysis error variance to be as low as possible, so minimize < (¢%)? > with
respect to W and then solve for W. The derivative is

d < (612 > /dW = 2W < (e?)? + ()2 > —2 < (¥)2 >=0

where we assumed that < €’e°”® >= 0. This means that there is no correlation between the error
in the background and the observation. If these are really two independent sources of information,
that is an entirely reasonable assumption. However, both data sources are related because they
are both a function of the true state. Nevertheless, this dependence is usually ignored and the
correlation is assumed to be zero. Now with the definitions,

(Uobs)Q = < (eobs)Q >,
(@) = < (>,
(1.5)
we may write: b
- ws)

(0°P%)2 is the observation error variance, and (¢®)? is the background error variance. Thus we
have determined the weight which produces a minimum analysis error variance and this weight
depends on the relative accuracies of the observed and background estimates. Because the relative
magnitudes appear in the definition (1.6), it is clear that 0 < W < 1. If the observation is perfect,
(0°7%)2 = 0 and W=1. The observation is given maximum weight. If, on the other hand, the
background is perfect, (6%)2 = 0 and W=0; the observation is ignored. Also, with this particular
choice of W, the analysis error variance is
(Ub)Q(UObS)g

< >= i e = 1 W) = ()7 4 (o)) (17)

The analysis equation may be written as:

x*=xP+ W(XObs — Xb), W =




where a = (0°7)%/(0%)%2. The analysis or estimate involves not only the data themselves but
also information about the biases and variances of their errors. To better understand the analysis
equation, let’s consider some special cases. If the observation is very accurate, (0°”)2 << (o),
then a = 0, W=1 and x® = x°"%. Thus, the weight given to the observation is 1, and the analysis
is simply taken to be the observed value. On the other hand, if the observation is very inaccurate
or the background is very accurate ((6°P%)? >> (0%)?), then a >> 1, W=0 and x* = x®. Thus the
weight given to the observation is 0 and the analysis is taken from the background value. Finally,
if the observation and background error variances are equal, then W=1/2 and x® = 0.5(x? + x°%).
Thus the analysis is given by an average of the two data sources.

In summary, to estimate a scalar variable based on two data sources, we linearly combined the
two pieces of information according to their accuracies. If the error statistics are exactly known,
then the solution that provides a minimum of analysis error variance was found.

1.6 The influence of observations over space

Let’s reconsider our simple example with a slight complication. Let us now suppose that our
observation is not in Toronto, but in Montreal. We will have a background (model forecast)
temperature for both cities, but our observation is only available in Montreal. We would like to
use this information to get an estimate of the temperature in Toronto. Again, assume that the
observation error is unbiased and has variance (o°P%)2. The background error is also assumed
unbiased with variance (¢°)? at both locations. The background error correlation between the two
cities is p. As before, we can write an analysis equation:

x4 = x5 4+ W —x4)) (1.8)

where the subscripts T" and M refer to Toronto and Montreal. We can also write the analysis
equation in terms of errors, by subtracting the truth from both sides:

€ = ebT + W(eﬁ?s — el]’v[) (1.9)

Typically the observation error includes representativeness error (the instrument may sample a
volume far smaller than a model grid volume). This equation is the same as (1.4) except that the
background and observation errors are needed in Montreal. As before, we can take the expectation
of both sides and note that the analysis error is unbiased if both the background and observation
errors are unbiased. To solve for the weights, we again need to use the information at our disposal:
the variances of the errors. First we must square both sides of (1.9) and take expectations. Then,
on minimizing with respect to W, we can obtain:

W — < E%E?\/[ > _ pa%a?\/[ (1.10)
(08 + (03)% (o) + (o5°)?

This weight is similar to (1.6) but now we need to know the background and observation errors at
Montreal as well as the correlation between the background errors between Toronto and Montreal.
If the observation were actually in Toronto (instead of Montreal), this correlation would be 1, all the
M subscripts would be replaced by 7”s and the weight would be identical to (1.6). If Montreal were
so far away that the background error correlation with Toronto’s background error is zero, then the
observation at Montreal would have no weight and no impact on the estimate of temperature in
Toronto. Thus, the information of an observation can be combined with background information,

just as before.




1.7 Conclusions

It is clear that data assimilation requires not only the observations and a background, but also
knowledge of of error statistics (background, observation, model, etc.) and of our physical knowl-
edge (forecast model, model relating observed to retrieved variables, etc.). The challenge of data
assimilation is in combining our stochastic knowledge with our physical knowledge. In particular,
for environmental applications, our models are huge, nonlinear and complex. The mathematics
of data assimilation is straight-forward for linear models. For nonlinear models, we need to use
our physical intuition as well. For large, complex models of any type, the success of any data
assimilation algorithm lies is the details. “The devil is in the details” is what is often heard at data
assimilation conferences. The choices one makes to render the problem computationally feasible
remove the mathematical equivalence of various methods that we shall encounter in the next few
weeks. As this course is really an introduction to data assimilation, we will ignore most of the
“details” to focus on the mathematical results by considering only linear models. This will allow
us to get a bigger picture of what data assimilation is really about, and how all these different
methods (OI, 3DVar, 4DVar, KF) are related to each other.

Since we need to know about errors, we need to know something about the underlying stochastic
processes that produce these errors. The most general information that we can have about a random
variable or random process is given by its probability density function. In the next chapter, we
will review some aspects of probability theory which will be needed to develop an understanding of
estimation theory. Later on, these results will be extended to the time dimension when we consider
stochastic processes.
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Problem Set 1

. In the scalar example of section 1.6, show that the analysis error is uncorrelated with the

observation increment, i.e.
< €1 — ") >=0.

. Reconsider the scalar example of section 1.6 when the observation and background errors are

correlated. Assuming that < €°¢® > and < (¢”)2 > are known, define a new observation
variable whose error is uncorrelated with the background error.

. In the simple scalar example, suppose that the observation and background errors are now

biased, i.e.
<P s=pobs b Ss=pb
Construct new variables that are unbiased:
iobs _ Xobs _ bobs

2 = xb - (1.11)

(a) Form the analysis equation in terms of errors.
(b) Show that < x% —x! >=0.
(c) Find W that minimizes < (€)% >.
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