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SUMMARY

In this study several approaches for obtaining more accurate background error covariances for atmospheric
data assimilation are evaluated. Experiments are conducted by replacing the covariances in the operational three-
dimensional variational analysis system at the Canadian Meteorological Centre. In the current system, these
covariances are computed using the so-called NMC method that is known to suffer from several deficiencies. The
approaches evaluated in this study attempt to more realistically sample the probability distribution of background
error by simulating (using a Monte Carlo approach) the error generated at each stage of the forecast-analysis
process. The ensemble Kalman filter and a simpler approach applied to an existing forecast-analysis system are
both used to generate these error samples. In addition, error samples are generated directly from the covariances
of the operational system to allow the effects of sampling error to be quantified. Several strategies for estimating
the full covariance matrix from a relatively small number of error samples are then employed. Approaches include
the use of a spatially localized ensemble representation of the correlations that allows the usual assumptions of
homogeneity and isotropy to be relaxed. In addition, the use of a weighted average between such a covariance
matrix and a covariance matrix with homogeneous and isotropic correlations is evaluated. Several diagnostic
results from the estimated background error covariances are presented in addition to verification statistics
computed from two week forecast-analysis experiments. Modest forecast improvements are obtained by using
the new background error covariance estimates, mostly in the southern hemisphere. However, additional results
suggest that further improvements may be gained by increasing the number of error samples and a preliminary
quantitative estimate of the expected gain is computed.
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1. INTRODUCTION

Most data assimilation schemes used for numerical weather prediction (NWP)
rely on a short-term forecast as a so-called background state. The purpose of the data
assimilation procedure is to compute an “optimal” correction to this background state
(referred to as the analysis increment) using the observations and estimates of the
uncertainty associated with the background state and the observations. The uncertainty
is typically characterized by covariance matrices for the error in the background state
and the observations. These covariance matrices determine the level of influence each
observation has on the analysis and how this influence is distributed both spatially
and among the different types of analysis variables. Most schemes are derived from
statistical estimation theory and produce an analysis increment that is optimal in the
sense that it gives the analysis with the smallest error variance when a set of assumptions
is satisfied. Critical among these assumptions is that the errors in the background state
and observations are Gaussian with zero bias and precisely known covariances. The
accurate specification of both covariance matrices represents a significant challenge in
the field of NWP.

Currently, the background error covariances used for NWP are known to suffer
from several deficiencies. The estimation of these covariances is a difficult problem due
to both a lack of knowledge of the statistical properties of background error and the
computational challenge of estimating the full covariance matrix of a random vector
containing at least

�������	��

elements. Partly to overcome these difficulties, it is often

assumed that the correlations of background error are homogeneous and isotropic. While
�
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this assumption can be justified to some extent on a theoretical basis (Daley 1991), there
is evidence that such correlations are not always appropriate, especially in baroclinically
unstable conditions. Several approaches for efficiently representing the background
error correlations without these assumptions have been proposed in the literature (e.g.
Derber and Rosati 1989; Desroziers 1997; Weaver and Courtier 2001; Wu et al. 2002).
To be practical, any such representation must involve a significant decrease in the
number of parameters required to define the covariances. These parameters are then
typically estimated from either a statistical study of the differences between forecasts
and observations (Hollingsworth and Lönnberg 1986) or an ad hoc method such as the
so-called NMC method described later (Parrish and Derber 1992). Another approach
is the ensemble Kalman filter (EnKF), originally proposed by Evensen (1994). This
approach is based on conducting Monte Carlo simulations to generate a set of random
samples for the analysis and background state probability distributions. The covariances
are then estimated from these random samples. However, additional assumptions must
be introduced to reduce the sampling error that results from the necessity of using
a relatively small sample size (Houtekamer and Mitchell 2001; Hamill and Whitaker
2001).

The goal of this study is to examine and evaluate several approaches for estimating
the covariances of background error for use in variational data assimilation systems.
Experiments were conducted to evaluate covariance matrices that differ according to
two aspects:

1. the approach used to generate the ensemble of random samples of background
error; and

2. the set of supplementary assumptions employed to obtain a useful estimate of the
full covariance matrix from only

� ����� � 

error samples.

While several approaches have been proposed and evaluated in various contexts in the
literature, this study focuses on two approaches for generating samples and three strate-
gies for estimating the full covariance matrix from the samples. The resulting six new
types of covariance matrices are used to assimilate a complete set of meteorological
observations and the results are compared with those obtained with the current opera-
tional system. Both approaches for generating the error samples rely on Monte Carlo
simulations of the forecast-analysis process. The first approach is to produce samples of
the stationary component of the background error distribution by perturbing the existing
forecast-analysis system, similar to Fisher (1999). For the second approach, ensembles
of background states are extracted from the EnKF of Houtekamer et al. (2003) to provide
samples from the flow-dependent background error distribution. The first strategy for
estimating the full covariance matrix from error samples employs the same set of as-
sumptions used for the operational system, including the constraint that the correlations
be homogeneous and isotropic in the horizontal (Gauthier et al. 1998). To avoid these
constraints, which are unrealistic for many situations, a more general ensemble repre-
sentation of the correlations is used as part of the second strategy. The third strategy is to
form hybrid covariances by using a weighted average of the covariances estimated using
the first two strategies, similar to Hamill and Snyder (2000). Examination of these six
types of covariance matrices allows the importance of using flow-dependent covariances
to be evaluated when using either homogeneous and isotropic correlations or a more
general ensemble representation of the correlations. Similarly, the impact of using dif-
ferent strategies for estimating the full covariance matrix can be independently evaluated
for stationary and flow-dependent error samples. Additional experiments are conducted
to quantify the impact of the sampling error that results from estimating the background
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error covariances from a small set of error samples. For these experiments the error
samples are generated by randomly sampling the multi-variate Gaussian distribution
defined by the full-rank covariances of the operational system.

The following section provides details on the role of background error covariances
in data assimilation and outlines the approaches considered for both sampling back-
ground error and estimating the full covariance matrix using a small set of error samples.
In Section 3, experimental details are given. Several diagnostics of the estimated back-
ground error covariances and results from analysis experiments are given in Section 4.
Section 5 provides results from a series of realistic forecast-analysis experiments that
span a two week period. Finally, conclusions are given in Section 6.

2. ESTIMATION OF BACKGROUND ERROR COVARIANCES

(a) Role of background error covariances in data assimilation
The importance of the background error covariances can be seen by examining the

linear analysis equation (see e.g. Gelb 1974)
�����

B � ��� � B � �
	��������������� � ��� 
��
�! �"�#��� � ��� 
$�&% (1)

where
���

is the analysis increment, B is the background error covariance matrix, � is
the linearized version of the observation operator

�
that maps the model state vector

into the space of the observations,
�

is the observation error covariance matrix,
�

is
a vector containing the observations,

�'�
is the background state and the superscript (

represents matrix transposition. The product of matrices on the right hand side of Eq. (1)
is represented by the Kalman gain matrix,  . If we take the case where only a single
observation is assimilated, then the two bracketed quantities in Eq. (1) are scalars and
the resulting analysis increment is proportional to B � � , where � � is a column vector.
Consequently, for a given type of observation the spatial and multi-variate structure of
the analysis increment depends strongly on the background error covariances.

In the variational approach, the analysis equation (1) is not explicitly solved, but
instead the same analysis increment is obtained by minimizing the cost function) � ) � 	 )+*

� �

, ��� � B
��� ��� 	 �

,.- ��/�� � ���10 � � ��� - ��/�� � ���10 % (2)

where
) �

and
)+*

are the background and observation components of the cost function,
respectively, and

� / � ���2� � ��� 

is the innovation vector. The minimum of

)
is

obtained by providing the value of
)

and its gradient for a given
���

to an iterative
optimization algorithm. The preconditioning strategy used in the operational three-
dimensional variational assimilation system (3D-Var) at the Canadian Meteorological
Centre (CMC) is only performed with respect to the background component of the cost
function. As a result, the square-root of B and its transpose are required instead of the
inverse. The optimization problem is recast in terms of a control vector, 3 , related to the
analysis increment according to �����

B
�54 � 3&6 (3)

The adjoint of this operation is also required for computing the gradient of the cost
function with respect to the control vector. Written in terms of the control vector,
the background term of the cost function becomes

) ��� ���"7 , 
 3 � 3 . Consequently, the
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minimization is perfectly preconditioned with respect to the background cost function.
If the background error covariance matrix has full rank, the dimension of the control
vector can be as large as that of the analysis increment, denoted by ��� .

(b) Approaches for sampling background error
The exact statistics of the error in the short-term forecast used as the background

state are not known since to obtain them would require precise knowledge of the
real atmospheric state. However, several approximate approaches have been developed
for sampling the background error. The extended Kalman filter provides a means
of continually evolving the error covariances of the estimated state in a sequential
forecast-analysis system. According to the extended Kalman filter, the background error
covariances are given by (see e.g. Gelb 1974)

B
�

M ��� M
� 	

Q
%

(4)

where M is the linearized forecast model, � � is the covariance matrix for the error
in the previous analysis and Q is the model error covariance matrix that accounts for
the additional error induced in the forecast by errors in the forecast model. Like the
background error itself, an accurate statistical description of the model error is not
available and remains a major challenge for all data assimilation approaches (Dee 1995).
Assuming that the background and observation error covariances are correctly specified,
the analysis error covariances are given by

� �
� -�� �  � � 0 B 6 (5)

For realistic problems, the solution of Eq. (4) and (5) is computationally infeasible
due to the high dimensionality of the covariance matrices. Instead of manipulating
the full covariance matrices, one common approach is to approximate the probability
distributions by an ensemble of random samples drawn from the distribution. The
following two approaches for generating such ensembles are examined in this study:
(i) a simple Monte Carlo simulation approach applied to an existing data assimilation
system (hereafter referred to as the perturbed 3D-Var) and (ii) the ensemble Kalman
filter. These two approaches are compared with the NMC method as currently used in
the operational system. A brief description of these three approaches follows.

Several NWP centres, including CMC, currently employ variational assimilation
systems with stationary background error covariances estimated using the NMC method
(Parrish and Derber 1992; Gauthier et al. 1998; Rabier et al. 1998; Derber and Bouttier
1999). Following this method, the differences between pairs of forecasts valid at the
same time, but having different lead times, are taken to be representative of background
error. Such forecast differences can easily be computed for a past period using the
archived output of an operational forecasting system. At CMC, the differences between
48 and 24 hour forecasts taken over a period of 2-3 months are used. However, a lack
of correspondence between these lagged forecast differences and 6 hour forecast error
necessitates a tuning of the computed covariances.

The EnKF uses a Monte Carlo simulation strategy to render the standard Kalman
filter algorithm feasible for even very high-dimensional systems (Evensen 1994). The
analysis, background, model and observation error distributions in Eq. (4) and (5) are
represented by an ensemble of random samples. To obtain these samples, a separate
forecast-analysis experiment is run for each ensemble member in which the observations
and background states are randomly perturbed in a way that is consistent with the
specified uncertainties in the observations (

�
) and the forecast model (Q), respectively
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(Burgers et al. 1998). The analysis for each ensemble member is performed using
background error covariances estimated from the ensemble spread of forecasts valid for
that specific analysis time. The approach can be made computationally feasible if the
ensemble size is limited to

������� � 

. However, for sophisticated NWP models it remains

unclear whether this is a sufficient number of error samples to adequately represent
the probability distributions. It is also unclear, as already stated, how to specify the
model error covariances. An implementation of the EnKF has been refined and applied
to increasingly realistic models by a research group at the Canadian centre (Houtekamer
and Mitchell 1998, 2001; Mitchell and Houtekamer 2000). The current version of this
EnKF uses a complete set of observations and the operational forecast model with a full
set of physical parametrisations (Houtekamer et al. 2003). The model error covariances
are prescribed in the form of an idealized covariance matrix similar to the background
error covariances used in the operational 3D-Var with the variances scaled by

� 6 ,�� . In
the present study, forecast ensembles from this system are used to estimate background
error covariances for use in the variational assimilation system.

A simpler approach based on Monte Carlo simulation and similar to that described
by Houtekamer et al. (1996) was recently used to recompute the stationary background
error covariances in the variational analysis system at the European Centre for Medium-
Range Weather Forecasts (Fisher 1999). Like the EnKF, an ensemble of forecast-
analysis experiments are conducted with perturbed observations and background states,
but with the analyses performed using prescribed stationary background error covari-
ances. Also, instead of attempting to compute flow-dependent error statistics, the ap-
proach is used to estimate the stationary component of the error statistics over a period
of several weeks. Due to the pooling of samples over time, only a small number of
perturbed forecast-analysis experiments are required in addition to an unperturbed ex-
periment. Differences between the 6 hour forecasts from the perturbed and unperturbed
experiments are then computed and used to represent samples of background error.
Again, the specification of the model error covariances used to compute perturbations to
the background states remains the biggest challenge. For the present study, this approach
was implemented using the 3D-Var with the operational background error covariances to
perform the analyses. To partially overcome the difficulty of specifying the model error
covariances, an adaptive tuning procedure was used. The tuning approach is based on a
comparison between the temporally averaged innovation statistics from the unperturbed
experiment and the simulated innovations from the perturbed experiment. The approach
is simpler than that proposed by Dee (1995) and examined by Mitchell and Houtekamer
(2000) in the EnKF context. The simplification is attained by assuming the model error
covariances are proportional to the current operational background error covariances and
therefore only the scaling factors applied to these covariances must be determined. The
scaling factors for wind components and temperature are computed independently for
each vertical level and for each of three latitude bands (total of 168 tuned parameters).
The tuning procedure guarantees that the horizontally averaged innovation variances
simulated by the perturbed experiment equal the true innovation variances. The compu-
tation of these scaling factors is outlined in Appendix A.

It should be noted that another class of ensemble-based approaches exists where the
appropriate error covariances are obtained without the need to perturb the observations.
While the use of perturbed observations leads to an ensemble of analyses with the correct
error covariances in a mean sense (Burgers et al. 1998; Houtekamer and Mitchell 1998),
for small ensembles the observation error distribution will be poorly represented by
the perturbations. Approaches that instead use the observation error covariance matrix
directly, are referred to generally as ensemble square root filters (Tippett et al. 2003).
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In these approaches the ensemble of background states are linearly transformed to
produce an ensemble of analyses with the correct ensemble spread covariances. This
transformation is not unique and several different solutions have been proposed (Bishop
et al. 2001; Anderson 2001; Whitaker and Hamill 2002).

(c) Strategies for reducing sampling error
For realistic NWP applications, a series of simplifying assumptions must be em-

ployed to accurately estimate the background error covariances from a small number of
error samples. In many systems the error correlations are assumed to be stationary and
globally homogeneous and isotropic. By making these assumptions, the number of inde-
pendent parameters in the covariance matrix is vastly reduced and a full-rank matrix can
be estimated from relatively few error samples. However, alternative assumptions may
be used instead to reduce sampling error while retaining a more realistic representation
of the covariances.

In the operational 3D-Var, the background error covariances are constrained to have
homogeneous and isotropic correlations for the variables: streamfunction, unbalanced
velocity potential, unbalanced temperature, natural logarithm of specific humidity, un-
balanced surface pressure and surface skin temperature. In addition, the background
error for each of these variables is assumed to be uncorrelated with the others and
the correlations between the full analysis variables are modeled with linear balance
operators. For example, the temperature increment is constructed by adding the incre-
ments of unbalanced and balanced temperature, where the latter is computed from the
streamfunction increment via a balance operator for geostrophy. This implies correla-
tions between the streamfunction and temperature increments that are consistent with
geostrophy and the hydrostatic relationship. Additional balance operators are employed
to create correlations between streamfunction and surface pressure (geostrophy) and be-
tween streamfunction and velocity potential near the surface (Ekman balance). Several
parameters in the balance operators themselves are statistically estimated from the en-
semble of error samples. The NMC method tends to underestimate variances in regions
with fewer observations, such as over oceans, leading to unrealistic zonal variations. To
address this problem, the background error variances in the operational system are con-
strained to be zonally invariant and are subjected to a tuning procedure. The complete
covariance matrix can be expressed as

B
�

GV
�54 �

C � V
� 4 �

G
� %

(6)

where C � is the correlation matrix for the set of independent variables listed above, V
is a diagonal matrix containing the error variances, and G transforms the unbalanced
variables into the full quantities for temperature, surface pressure, and velocity potential
using the balance operators listed above. Due to the preconditioning strategy described
in Section 2a, only the square-root of this covariance matrix is required. More details
concerning the background error covariances in the operational system are given by
Gauthier et al. (1998).

Alternatively, the error covariances can be estimated without constraining the
correlations to be homogeneous and isotropic. However, correlations estimated directly
from a small number of error samples often do not approach zero at long separation
distances, but can be unrealistically large even on the opposite side of the globe.
To overcome this problem, a procedure for spatially localizing the correlations was
proposed by Gaspari and Cohn (1999) and examined in the context of an EnKF by
Houtekamer and Mitchell (2001) and Hamill and Whitaker (2001). The technique for
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efficiently employing a spatially localized ensemble representation of the background
error correlations in a variational assimilation framework is described in Appendix B.
Two approaches for utilizing the localized ensemble representation of the correlations
were used. The first is to simply replace the correlation matrix in (6) with the localized
correlation matrix computed for the independent analysis variables listed above. The
second approach is very similar to how the covariances are estimated in the EnKF of
Houtekamer et al. (2003). In that case no balance operators are used and the within- and
between-variable correlations are estimated for: wind components, temperature, natural
logarithm of specific humidity, surface pressure and skin temperature. There are two
important differences between these approaches: (i) the between-variable correlations
are estimated using simplified balance operators in the first and estimated directly from
the error samples in the second; and (ii) localization is performed on streamfunction and
velocity potential in the first and wind components in the second.

The difficulties with estimating the full correlation matrix from a small ensemble
can also be addressed through the addition of a second correlation matrix for which
the assumptions of homogeneity and isotropy are imposed. This hybrid approach was
used in the context of an EnKF by Hamill and Snyder (2000). In the variational context
where preconditioning is performed with respect to the background term, a convenient
approach is to combine two such covariance matrices through augmentation of the state
vector. The analysis increment is then computed using the relationship

������� � B �54 �� 3 � 	 � � B
�54 �

� 3 �
%

(7)

where B � is the full-rank covariance matrix with homogeneous and isotropic correla-
tions and B � is the covariance matrix using a spatially localized ensemble representation
of the correlations. The parameters

���
control the relative weight given to each covari-

ance matrix. This approach for combining two matrices to form hybrid covariances
provides the greatest flexibility since there is no requirement that one of the covari-
ance matrices has low-rank. Also, the same level of preconditioning is retained as when
employing either of the covariance components individually, though the dimension of
the control vector is increased. Consequently, the augmented control vector used by the
minimization algorithm is

3 ��� 3 �3 ���
and the form of the background term of the cost function remains unchanged. It can be
shown that this is equivalent to using the non-preconditioned cost function from Eq. (2)
where B is replaced by the hybrid covariance matrix - � �� B � 	 � �

� B �
0
.

3. DESCRIPTION OF THE EXPERIMENTS

Several types of numerical experiments were performed using 3D-Var to address
three primary goals. The first goal is to evaluate the impact of using the perturbed 3D-
Var (PERT) or EnKF (ENKF) to generate background error samples versus the NMC
method (CNTL). The second goal is to compare background error covariances estimated
using either homogeneous and isotropic correlations (-HI), a spatially localized ensem-
ble representation of the correlations (-ENS) or a weighted average of these two repre-
sentations (-HYB). These two goals are closely related since the two new approaches for
generating error samples are each combined with the three strategies for representing
the correlations resulting in six types of covariances. The final goal is to estimate the
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importance of the sampling error that results from using a finite number of samples to
estimate the covariances.

To obtain error samples using the perturbed 3D-Var approach, several forecast-
analysis experiments were conducted with the observations and background fields ran-
domly perturbed at each analysis time. In addition, a similar forecast-analysis exper-
iment was performed but without perturbations (CNTL experiment). In the perturbed
experiments, the perturbations for the observations and background states were drawn
from multi-variate Gaussian distributions with specified observation and model error
covariances, respectively. The variances of the model error covariances were adaptively
tuned, as described in Section 2b and Appendix A, to ensure that the the differences
between the background states from the perturbed and unperturbed experiments are
consistent with the forecast error variances estimated from the true innovations. These
differences were then extracted and used as the error samples. A total of 153 error
samples from three perturbed 3D-Var experiments were used for estimating stationary
background error covariances (PERT experiments).

The time period for all data assimilation experiments was 19 May 2002 to 2 June
2002, chosen to coincide with the period used for the most recent EnKF study by
Houtekamer et al. (2003). This allowed the use of the 128 member forecast ensem-
bles produced for that study for estimating flow-dependent 3D-Var background error
covariances (ENKF experiments).

To quantify the impact of the sampling error that results from using a finite size
ensemble representation of the correlations, a set of random samples were directly gen-
erated from the full-rank background error covariances of the operational 3D-Var. Data
assimilation experiments were then performed using background error covariances es-
timated from these random samples and employing a localized ensemble representation
of the correlations (BSAMP experiments).

The combinations of approaches for generating error samples and representing the
correlations results in nine different types of background error covariances that are
evaluated in this study. A summary of these types of covariances is given in Table 1.
The spatial localization procedure described in Section 2c and Appendix B was used for
all covariance matrices for which the ensemble representation of the correlations was
employed. The horizontal and vertical length scales for the localization vary between
the experiments and are therefore given with the results of each experiment.

The background error variances from each covariance matrix are first examined
to evaluate how the approach for generating error samples effects both the horizontal
structure and the extent to which the wind and mass errors are in geostrophic balance.
Next, to illustrate the combined effect of the correlations, the localization procedure
and the balance operators in determining the covariances, a series of analysis experi-
ments are performed in which only one observation is assimilated. These experiments
illustrate how information from the single observation is spread both spatially and to
the other variable types by the background error covariances. This type of experiment
is performed to show the effect of applying the different correlation representations to
the perturbed 3D-Var error samples. Single observation analysis experiments are also
performed to illustrate the ability of the error samples from the EnKF to resolve a highly
flow-dependent feature as compared with a typical 4D-Var analysis system. A series of
3D-Var analyses with a complete set of observations is then performed to examine the
relationship between sampling error and both the number of error samples and the spatial
localization used to estimate the correlations. To provide a more realistic evaluation of
the impact of using flow-dependent error covariances with the ensemble representation
of the correlations, a single analysis is performed with all available observations for a
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TABLE 1. SUMMARY OF BACKGROUND ERROR COVARIANCE MATRICES EVALUATED.

Name Description

CNTL Control: covariance matrix from the operational 3D-Var

PERT-HI
Covariances estimated from the perturbed 3D-Var with homogeneous and isotropic
correlations and balance operators

PERT-ENS
Same as PERT-HI, but with ensemble representation of the correlations, balance
operators used for between-variable correlations

PERT-HYB
Hybrid covariances formed by computing the mean of the correlation matrices used
in PERT-HI and PERT-ENS �������� ���� �	��
 ��

ENKF-HI
Flow-dependent covariances from EnKF with homogeneous and isotropic correlations
and using the balance operators as in PERT-HI

ENKF-ENS
Flow-dependent covariances from EnKF with correlations (including between-
variable correlations) estimated directly from the forecast ensembles using an ensem-
ble representation

ENKF-HYB
Hybrid covariances formed by computing the mean of the covariance matrices used
in CNTL and ENKF-ENS ������ � ���� �	��
 ��

BSAMP-32

Covariances estimated from 32 random samples generated using the operational 3D-
Var covariance matrix, using an ensemble representation of the correlations and
between-variables correlations estimated directly from the error samples (no balance
operators)

BSAMP-128 Same as BSAMP-32, but using 128 random samples

BSAMP-512 Same as BSAMP-32, but using 512 random samples

Spatial localization is applied in all cases where the ensemble representation is used for the correlations.

particularly active case over the North Pacific. The analysis and subsequent forecast are
compared with those from the operational system. Finally, forecast-analysis experiments
are performed spanning the period from 19 May 2002 to 2 June 2002. These provide
the most realistic evaluation of the overall impact that the new covariances would have
in an operational setting. The experiments are used to evaluate and compare the six
types of background error covariances obtained using the perturbed 3D-Var or EnKF
to generate the error samples and the three strategies for representing the correlations.
Forecast-analysis experiments are also conducted using three different ensemble sizes
with samples randomly drawn from the multi-variate Gaussian distribution defined by
the full-rank covariances of the operational system. These experiments complement the
previously mentioned single analysis experiments by providing an evaluation of the ef-
fect of sampling error on both the analyses and background states in an operational
setting.

4. ESTIMATED BACKGROUND ERROR COVARIANCES: DIAGNOSTICS

(a) Model error tuning in perturbed 3D-Var
Figure 1 shows the tuning coefficients adaptively computed for the perturbed 3D-

Var experiments as described in Section 2b and Appendix A. The coefficients for the
wind components (UV) and temperature (T) as a function of both vertical level and
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Figure 1. Adaptively tuned scaling coefficients applied to the operational background error covariances to obtain
model error covariances for the perturbed 3D-Var experiment. The upper panels show the temporal mean for (a)
wind components and (b) temperature as a function of vertical level. Lower panels show the vertical mean for
(c) wind components and (d) temperature as a function of time. All panels show the coefficients for the northern
extra-tropics, tropics and southern extra-tropics as denoted in the legend. Note that the zero values appearing in the
vertical profiles correspond to a situation where a sufficient forecast error variance is simulated by the perturbed

3D-Var experiment without the need for model error perturbations.

time are shown. These coefficients were used to scale the standard deviations (std dev)
of the operational background error covariances to obtain the appropriate model error
covariances. The vertical structure of the coefficients differs substantially between the
extra-tropical and tropical regions. In the extra-tropics the coefficients are largest in the
troposphere and decrease above the tropopause. The coefficients for temperature are
also reduced near the surface. In the tropics, the coefficients are generally larger above
about 250 hPa. Temporally, the coefficients oscillate with values being relatively larger
at 06 UTC and 18 UTC than at 00 UTC and 12 UTC. This is likely due to the higher
number of radiosonde observations that are assimilated at 00 UTC and 12 UTC. The
added observations, even though they are perturbed, act to reduce the simulated analysis
error and therefore also decrease the simulated prediction error in the subsequent
forecasts at 06 UTC and 18 UTC (before the addition of model error perturbations).
Since the true innovation variances used to compute the tuning coefficients do not vary
in time, the model error variances are increased to compensate for the decrease in the
simulated prediction error.

In Fig. 2 the fraction of the estimated background error variance due to the model
error perturbations for each region is shown for wind components and temperature. This
shows that the background error for winds is most dominated by model error near the
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Figure 2. The fraction of the estimated background error variance from the perturbed 3D-Var experiments that
is directly due to the model error perturbations for both (a) wind components and (b) temperature.

surface where it accounts for about 80% of the background error variance in the extra-
tropics. This large contribution of model error to the surface wind background error may
be due to the effects of unresolved orography and an overly diffusive boundary layer
parametrisation on the surface winds. In contrast, the minimum contribution of model
error is seen for temperature in the tropics where only about 15% of the background
error variance is directly related to the addition of model error perturbations. The lower
values for the southern extra-tropics relative to the northern extra-tropics may simply
be related to larger values of background error std dev in the south (as discussed in the
following section) whereas the absolute contribution from model error is more similar
between the two regions.

(b) Estimated background error variances
The linear analysis equation (1) shows that, in a general sense, the ratio between

the background error variances and the sum of the background and observation error
variances gives an indication of the relative importance of a particular observation in the
analysis. The observation error variances in the operational 3D-Var do not depend on
horizontal location and therefore the variations in background error variance strongly
determine relative differences in how observations will affect the analysis increment.
The upper panels of Fig. 3 show the std dev for streamfunction at a level near the
extra-tropical jet (left) and temperature in the middle troposphere (right) from the
operational background error covariances. The lack of zonal variation is imposed when
the covariances are computed from lagged forecast differences as described earlier.
Similar std dev fields are shown in the middle panels of Fig. 3 as computed from the
perturbed 3D-Var. In this case the zonal variations have been retained. In the bottom
two panels of Fig. 3 the std dev is shown as computed by temporally averaging the
EnKF background ensemble spread variances between 21 May 2002 and 2 June 2002.
When using the error samples from the perturbed 3D-Var or the EnKF the horizontal
variations in std dev appear to be realistic with larger values of std dev appearing in areas
that are less well observed and more dynamically active such as in southern (winter)
hemisphere for both variables and over the oceans for temperature. The higher level of
small-scale variability in the perturbed 3D-Var versus the EnKF variances is due to the
use of approximately 40 times less error samples from the perturbed 3D-Var. Differences
from the two approaches are partly due to differences in the model error variances, where
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Figure 3. Estimated background error std dev of (a) streamfunction near 250 hPa ( � � ��
 � ��� ) and (b) tempera-
ture near 500 hPa ( � � ��
 � � � ) computed using the “NMC method”. Similarly, panels (c) and (d) show the same
results estimated from the perturbed 3D-Var experiments and panels (e) and (f) show the results estimated by

temporally averaging the background ensemble spread variances from the EnKF.

the EnKF uses globally constant model error variances and the perturbed 3D-Var uses an
adaptively scaled version of the background error variances from the operational system.

The background error correlations between the mass and wind fields ensure that
the analysis increment will be geostrophically balanced to some extent even when only
wind or temperature observations are assimilated. Likely as a result of the relatively
long 24 and 48 hour integrations used to compute the lagged forecast differences in the
NMC method, the operational background error covariances have higher correlations
between the mass and wind fields in the extra-tropical troposphere than the covariances
computed from either the perturbed 3D-Var or the EnKF. Figure 4 shows the ratio of
unbalanced temperature to the full temperature variance for the operational background
error covariances (Fig. 4a) and for those computed from the perturbed 3D-Var (Fig. 4b).
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Figure 4. The zonally averaged unbalanced temperature variance normalized by the full temperature variance
from (a) the operational background error covariances (CNTL) and (b) the covariances estimated from the

perturbed 3D-Var (PERT).

Low values of this ratio correspond with high correlations between the mass and wind
fields. The ratio reaches a minimum of 20% for the operational covariances, whereas for
the perturbed 3D-Var it only reaches about 60%. A similar reduction in balance was also
seen in the covariances computed from the forecast ensembles of the EnKF (not shown)
and in the results of Fisher (1999). At this point, it is unclear if the reduced balance is
more consistent with the true background error.

(c) Single observation experiments
The analysis increment resulting from the assimilation of a single observation

provides a partial view of the background error covariances by showing how information
from the observation is distributed both spatially and among the different analysis
variables. From Eq. (1), the analysis increment is proportional to B � � , where � is
reduced to a row vector representing the observation operator for the single assimilated
observation. For observation types closely related to one of the variables represented
in the background error covariances, the analysis increment is simply proportional to a
column of B.

First, the covariances from the operational 3D-Var are compared with the covari-
ances estimated from the perturbed 3D-Var using the three representations for the back-
ground error correlations. In addition, the result of using the ensemble representation of
the correlations without spatial localization is shown. The increments computed from
assimilating a single zonal wind observation 1 m s

���
greater than the background wind

over the Pacific Ocean near 250 hPa are shown when using each background error co-
variance matrix.

With the correlations constrained to be homogeneous and isotropic, the analysis
increments are quite similar when the background error samples are generated using
either the NMC method (Fig. 5, upper panels) or the perturbed 3D-Var (Fig. 5, lower
panels). The horizontal and vertical correlations for wind at 250 hPa are slightly sharper
and the geopotential height and wind increments decrease more rapidly north of 45

�

N
when using error samples generated with the perturbed 3D-Var. The geopotential height
increment is reduced when using the perturbed 3D-Var error samples, consistent with
the reduction in the geostrophic balance discussed earlier. The analysis increment has a
more complex structure when the ensemble representation of the correlations without
spatial localization is used (Fig. 6, upper panels). Comparing the upper and middle
panels of Fig. 6 shows that spatial localization has the expected effect of reducing
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Figure 5. Analysis increment of wind (vectors in left panels and contours in right panels) and geopotential height
(contours in left panels) from a single zonal wind observation located at 45

�

N, 180
�

E and near 250 hPa when
using the CNTL background error covariances (upper panels) and the PERT-HI covariances (lower panels). Panels
(a) and (c) show the analysis increment for wind and geopotential height near 250 hPa and panels (b) and (d) show
the vertical-zonal cross-section of the wind increment along 45

�

N. Note that solid contours are used for positive
values and dashed for negative.

the analysis increment for both wind and geopotential height the most for grid points
furthest from the location of the observation. The analysis increment produced using
the localized correlations resembles the increment produced using the homogeneous
and isotropic correlations much more than when no spatial localization is applied. Using
the mean of the localized ensemble representation and the homogeneous and isotropic
representation of the correlations (Fig. 6, bottom panels) further increases the similarity
of the analysis increments with those produced with only homogeneous and isotropic
correlations while still retaining a degree of anisotropy in the general structure.

In addition, single observation experiments were conducted to evaluate the impact
of estimating the between-variable correlations directly from the error samples without
the use of balance operators (not shown). With the balance operators, the resulting anal-
ysis increments for geopotential height are constrained to be geostrophically balanced
with the winds (as seen in the previous figure). Conversely, when the between-variable
correlations are estimated directly from the error samples, the resulting geopotential
height increment contains more small-scale structure and its contours are often far from
being aligned with the wind vectors.

Obviously, the influence of spatially heterogeneous forcing on the correlation struc-
ture of background errors can not be resolved when the constraints of homogeneity and
isotropy are imposed. However, the effects of such stationary influences as orography
can be captured when using the ensemble representation of the correlations even when
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Figure 6. Same as the previous figure, but using the PERT-ENS background error covariances either without
spatial localization (upper panels) or with localization (middle panels) and the PERT-HYB covariances (lower

panels). Balance operators are used to represent the between-variable correlations.

the error covariances are assumed stationary and therefore estimated from error samples
distributed over time. Figure 7 shows the analysis increment from assimilating a single
zonal wind observation near 500 hPa over a mountainous region of North America with
contours of the land elevation superimposed. When using correlations that are homo-
geneous and isotropic (Fig. 7a), the analysis increment is clearly not influenced by the
presence of the mountains. Conversely, this influence can be seen when the ensemble
representation of the correlations is used (Fig. 7b): the geostrophically balanced geopo-
tential height increment exhibits a local increase where the wind increment is directed
towards the west over the mountain peaks as can be seen around 50

�

N and 30
�

N. This
results in a general equatorward deflection of the winds over the ascending slopes and a
poleward deflection over the descending slopes.
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Figure 7. Analysis increment of wind (vectors) and geopotential height (shaded contours) from a single zonal
wind observation located at 40

�

N, 110
�

W and near 500 hPa when using either (a) the PERT-HI covariances or
(b) the PERT-ENS covariances with spatial localization. The orography is also shown in gray contours.

Nonstationary features such as strong horizontal gradients and regions of instability
also influence the background error statistics. To capture these influences, however,
requires a method for adequately sampling the instantaneous probability distribution
of background error at each analysis time. The EnKF is designed to capture such flow-
dependent error statistics. To demonstrate this ability of the EnKF, a single temperature
observation 1 K greater than the background temperature near 900 hPa was assimilated
within a strong near-surface temperature front that appeared over the North Pacific on
27 May 2002 at 12 UTC. The background error std dev for temperature and zonal wind
estimated from the EnKF for this case (not shown) is elevated both in the vicinity of
the front and close to the associated low pressure centre that is located to the north-west
of the front at 45

�

N, 170
�

W. During the preceding two days this low pressure centre
is seen to rapidly deepen as it progresses eastward across the Pacific Ocean. Eventually
it encounters the west coast of North America where it stalls and begins to diminish in
intensity.

The analysis increment produced using the background error covariances from the
operational 3D-Var (Fig. 8) is clearly unaffected by the local meteorological conditions
(the background temperature is shown in dark contours). The temperature increment
decays in a nearly isotropic fashion away from the observation location and the wind
increment is nearly zero at the location of the temperature observation. In contrast, when
using the covariances estimated from the EnKF (Fig. 9) the temperature increment is
slightly elongated along the front and the wind increment is larger with vectors oriented
parallel with the background temperature gradient at the observation location. For
comparison, the same experiment was performed using the EnKF covariances from the
previous day (not shown). For that case the gradient in the background temperature field
is oriented almost perpendicular to the original case and again the analysis increment for
wind is parallel with the background temperature gradient. Finally, the background error
covariances from the operational 3D-Var were propagated 6 hours using the tangent-
linear and adjoint versions of the forecast model to simulate the implicit covariance
propagation of a four-dimensional variational assimilation (4D-Var) over a 6 hour
window. Using these propagated error covariances to assimilate the single temperature
observation produces an analysis increment (Fig. 10) that is slightly modified relative
to the control experiment (Fig. 8). The change in the wind increment demonstrates that
the covariance propagation has introduced qualitatively similar correlations between the
temperature and wind fields as in the EnKF covariances such that the winds are again
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Figure 8. Analysis increment of temperature (shaded contours) and wind (vectors) from a single temperature
observation near 900 hPa located in a strong near-surface temperature front at 12 UTC, 27 May 2002. Panel
(a) shows temperature and wind increments near 900 hPa and (b) shows the vertical-zonal cross-section of the
temperature increment along 40

�

N. The ensemble mean background temperature field is shown in the left panel
as black unshaded contours with a contour interval 10 times larger than for the temperature increment. The CNTL

background error covariances are used for generating this analysis increment.
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Figure 9. Same as Fig. 8, but using ENKF-ENS background error covariances estimated from the ensemble of
EnKF background states valid at 12 UTC, 27 May 2002 with spatially localization.

parallel to the background temperature gradient. These background error correlations
between temperature and wind appear to be related to temperature advection across the
background temperature front. Further experiments to compare covariances from the
EnKF and those implicitly propagated by 4D-Var are left for a future study.

(d) 3D-Var analysis sensitivity to ensemble size and spatial localization
The covariances used in the operational 3D-Var form a full-rank matrix due to the

imposition of homogeneity and isotropy on the correlations. A set of random samples
were directly generated from these background error covariances to evaluate the sensi-
tivity of the 3D-Var analysis to the number of error samples used to estimate the back-
ground error covariances and the spatial localization applied to the correlations. Without
the application of spatial localization or even the assumption that the correlations are
homogeneous and isotropic, the covariances estimated from these samples should con-
verge to the full covariance matrix of the operational 3D-Var as the number of samples
is increased. Therefore, since for this case the result of using the exact covariances is
known, the use of these samples provides a practical means to quantify the effect of
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Figure 10. Same as Fig. 8, but with the CNTL background error covariances propagated 6 hours by tangent
linear and adjoint versions of the forecast model to simulate the effective background error covariances used in a

4D-Var analysis.

sampling error on the analysis as a function of the ensemble size and the amount of
spatial localization. If we assume the resulting covariances are affected by sampling
error in a similar way as when the error samples are generated with the perturbed 3D-
Var or EnKF, then the conclusions from these sensitivity tests should be applicable to
those other cases for which the exact covariances are not known.

A series of 3D-Var analyses with all available data on 26 May 2002 at 12 UTC was
performed using various ensemble sizes and length scales for the horizontal and vertical
localizations to define an ensemble representation of the background error correlations.
(The localization length scale defines the distance at which the function reaches zero.)
The final value of the observation component of the cost function was used as a measure
of the ability of the analysis to fit the data. For small ensemble sizes with no localization,
it should be expected that the analysis can not fit the data well due to the limited number
of degrees of freedom which can not exceed the ensemble size and therefore is much less
than the number of independent observations. On the other extreme, localization with
a very short length scale can eliminate background error correlations between closely
spaced observations that are present in the full covariance matrix and consequently allow
the analysis to fit these data too closely. The quality of the resulting analyses is evaluated
by comparing the final value of the observation cost function with the result from using
the exact covariance matrix (see Table 2).

Very little sensitivity with respect to ensemble size is seen when no spatial local-
ization is applied to the correlations (denoted in Table 2 by length scales of � ). In this
case using 32, 128 or 512 error samples all give approximately the same fit to the data
(maximum difference of 5%). Conversely, when applying horizontal localization with a
length scale of 10000 km or smaller, the observation cost function is reduced by 34% or
46% (depending on the vertical localization used) when the ensemble size is increased
from 32 to 512. The localization also affects the fit to the observations when applied to
the true covariances, which is shown in the last column of Table 2. This demonstrates, for
example, that a similar fit to the observations can be achieved by using 512 error samples
with sufficient localization (length scales of 3500 km in the horizontal and 2 units of the
natural logarithm of pressure in the vertical) as when using the full covariances, but that
this amount of localization applied to the full covariances also decreases the final value
of the observation cost function to 85% of the value when no localization is applied.
This makes explicit the compromise involved in using spatial localization: the sampling
error can not be removed without also suppressing the true correlations to some extent.
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TABLE 2. NORMALIZED FINAL VALUE OF THE OBSER-
VATION COST FUNCTION AS A FUNCTION OF ENSEMBLE
SIZE AND THE HORIZONTAL AND VERTICAL LOCALIZATION
LENGTH SCALES (DISTANCE WHERE CORRELATION REACHES

ZERO).

Localization length scales Ensemble size

Horizontal Vertical 32 128 512 �

� � 3.15 3.10 2.98 1.00
10000 km � 2.72 2.30 1.77 0.96
5000 km � 2.42 1.83 1.35 0.91
3500 km � 2.22 1.60 1.19 0.87
2800 km � 2.09 1.46 1.12 0.84
2000 km � 1.89 1.28 - 0.79
1000 km � 1.53 1.04 - 0.65

10000 km 2 2.23 1.73 1.31 0.94
5000 km 2 1.82 1.35 1.08 0.89
3500 km 2 1.59 1.20 1.01 0.85
2800 km 2 1.47 1.11 0.97 0.82
2000 km 2 1.30 1.02 - 0.76
1000 km 2 1.04 0.88 - 0.63

The vertical length scale is specified in units of the natural loga-
rithm of pressure. The column for � ensemble size corresponds
to using the full covariance matrix. The missing values could not
be computed due to computer memory limitations.

5. RESULTS FROM REALISTIC FORECAST-ANALYSIS EXPERIMENTS

(a) Verification of analysis increments from an individual case
The 3D-Var was used to produce global analyses for 27 May 2002 at 12 UTC using

the full set of operational observations and the background state from the operational
system. This is the same case with a developing low pressure system over the North
Pacific used to produce the analysis increments from a single temperature observation
as shown in Fig. 8 to 10. Analyses were obtained using the CNTL and ENKF-ENS
background error covariances and 5 day forecasts produced from each. Figure 11 shows
the statistics for the difference between the analyses and also the differences between
the two resulting forecasts for the North Pacific region from 20

�

N to 65
�

N and 140
�

E
to 120

�

W. The differences in the analyses due to the change in background error
covariances have a std dev near 1 m s

���
for the wind components, 0.5 K for the

temperature field and less than 3 K for the dew-point depression (ES). After 2 days
the maximum difference in the forecasts is seen for the winds near the level of the
extra-tropical jet where the std dev has grown by about a factor of two. After 5 days the
differences in all the variables have grown by about a factor of four, except for the winds
at the jet level for which they have grown by about a factor of seven.

Figure 12 shows the statistics of the differences between forecast and analysis
where the analysis is taken from a forecast-analysis experiment using the operational
background error covariances. The statistics are again calculated for a region over the
North Pacific as defined earlier. These differences can be considered to be reasonable
estimates of the true error in the forecasts. Even though the difference between the two
background error covariance matrices produces a large difference in the resulting fore-
casts (Fig. 11), the agreement of the forecasts with the verifying analyses is much more
similar. As expected the largest difference for the winds occurs at the jet level where
the std dev of the 5 day forecast from the ENKF-ENS analysis is about 1 m s

���
smaller

than for the control. In general, the analysis using the ENKF-ENS background error
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Figure 11. Bias (gray curves) and std dev (black curves) for the North Pacific region (20
�

N to 65
�

N and
140

�

E to 120
�

W) of the difference between the analyses (first column) valid at 12 UTC, 27 May 2002 and the
resulting 2 and 5 day forecasts (second and third columns, respectively) computed using the CNTL and ENKF-

ENS background error covariances.

covariances produces an improved forecast for this case and this region, except above
about 200 hPa where a slight degradation is seen in the 5 day forecast.

(b) Verification of two week forecast-analysis experiments
A set of forecast-analysis experiments was performed to evaluate in a quasi-

operational setting the impact of using each of the background error covariance matrices
listed in Table 1. All experiments used the identical configuration of the Global Envi-
ronmental Multiscale (GEM) model (Côté et al. 1998) to obtain the 6 hour forecasts
used as the background states. The model horizontal resolution for the experiments was
1.5

�

with 28 eta levels in the vertical and the top set to 10 hPa. The same spatial resolu-
tion was also used for both the 3D-Var and EnKF analyses. All experiments also used a
complete set of meteorological observations except that, to be consistent with the EnKF
experiments of Houtekamer et al. (2003), surface wind and surface humidity observa-
tions were omitted. Instead of applying the normal quality control procedure to each
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Figure 12. Bias (gray curves) and std dev (black curves) for the North Pacific region (20
�

N to 65
�

N and 140
�

E
to 120

�

W) of the difference between the analyses from the CNTL forecast-analysis experiment and the 2 and 5
day forecasts from the analysis produced using either the operational background error covariances (CNTL) or

the flow-dependent covariances estimated from the EnKF (ENKF-ENS) at 12 UTC, 27 May 2002.

experiment, only the observations accepted for assimilation in the operational analyses
were used. This ensures that the identical set of observations was used for each ex-
periment. A forecast-analysis experiment using the background error covariances from
the operational 3D-Var served as the control (CNTL experiment). All forecast-analysis
experiments spanned the period of 19 May 2002 to 2 June 2002.

The goal of the first set of experiments is to quantify the sensitivity of the analyses
and background states from a complete forecast-analysis experiment to sampling error in
the background error covariances. These covariances were estimated from either 32, 128
or 512 random samples generated directly from the multi-variate Gaussian distribution
defined by the operational background error covariances. Spatial localization with length
scales of 5000 km in the horizontal and 2 units of the natural logarithm of pressure
in the vertical was applied to the ensemble representation of the correlations. The
std dev of the differences between radiosonde observations and the 6 hour forecasts
are shown in the upper panels of Fig. 13 from the forecast-analysis experiment using
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Figure 13. Std dev of the difference between the radiosonde observations and the 6 hour forecast (panels
(a)-(c)) and the analyses (panels (d)-(f)) from the CNTL, BSAMP-32, BSAMP-128 and BSAMP-512 3D-Var

experiments.

the CNTL, BSAMP-32, BSAMP-128 and BSAMP-512 background error covariances.
Similarly, the std dev of the differences between radiosonde observations and the
analyses are shown in the lower panels of Fig. 13 for the same experiments. Only the
std dev for wind components at 250 hPa, geopotential height at 500 hPa and dew-point
depression at 850 hPa are shown for the northern extra-tropical, tropical and southern
extra-tropical regions. Consistent with Table 2, these results show a strong sensitivity
in both the 6 hour forecasts and the analyses to the number of error samples used
to estimate the background error covariances. For the specific correlation localization
used in these experiments, even 512 error samples do not appear to be sufficient to
estimate the full background error covariance matrix. The effects of sampling error on
the 6 hour forecasts are largest for geopotential height in the extra-tropical regions
and for the analyses the effects are largest for dew-point depression. Only in the
tropics, the accuracy of the forecasts and analyses when using 512 error samples
approaches that of the experiment with the full covariances for both wind components
and geopotential height. Also, it is interesting to note that while the effect of sampling
error on geopotential height remains approximately the same between the analyses and
6 hour forecasts, for winds and dew-point depression this effect is reduced substantially
on the forecasts relative to the analyses.

In the next set of experiments the six types of covariance matrices estimated using
the perturbed 3D-Var and EnKF error samples were evaluated. Again, spatial local-
ization was applied when using the ensemble representation of the correlations (that
is PERT-ENS, PERT-HYB, ENKF-ENS, and ENKF-HYB). For the covariances esti-
mated from the EnKF forecast ensembles, the length scale for the localizing correlation
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function was set to 2800 km in the horizontal and 2 units for the natural logarithm
of pressure in the vertical. These parameters were chosen to match those used for the
EnKF experiment of Houtekamer et al. (2003). For the covariances computed from the
perturbed forecast-analysis experiments, the horizontal length scales were set for each
vertical level to be proportional to the horizontal length scale of the homogeneous and
isotropic correlations. The proportionality constant was set so that the length scale was
close to 2800 km in the middle troposphere, but became substantially larger at upper
levels.

The same verification statistics as shown in the previous figure were computed
for the forecast-analysis experiments using the PERT-HI, PERT-ENS and PERT-HYB
background error covariances. In the upper panels of Fig. 14 these statistics are shown
for the 6 hour forecasts. When compared with the CNTL experiment, the use of
the covariances estimated from the perturbed 3D-Var error samples results in 6 hour
forecasts and analyses (not shown) of relatively similar quality. Employing the different
approaches to estimate the correlations also has little impact on the results. Similar
results were also obtained for the experiments using the error samples obtained from
the EnKF as shown in the lower panels of Fig. 14. While the agreement of the 6 hour
forecasts with the observations was similar to the PERT experiments, the difference
between the analyses and the observations (not shown) was slightly larger for the wind
observations and almost twice as large (in terms of std dev) for the dew-point depression.
The decreased fit to the humidity observations is likely due to the lack of model error
perturbations for humidity in the EnKF that results in the background error variances
for humidity being underestimated. This lack of fit, however, is completely eliminated
in the 6 hour forecast that has nearly identical std dev with respect to the radiosonde
observations as the CNTL experiment.

The next figure was produced to provide a direct comparison of the quality of the
error samples obtained from the EnKF, independent of sampling error. Results from the
control experiment are shown together with those from an experiment using samples
generated directly from the operational 3D-Var background error covariances (BSAMP-
128) and an experiment using error samples from the EnKF (ENKF-ENS). The BSAMP-
128 and ENKF-ENS experiments both use 128 error samples and the identical ensemble
representation of the correlations, including identical spatial localization. A summary of
the verification statistics with respect to radiosonde observations for the 6 hour forecasts
is shown in Fig. 15. These results show that estimating the background error covariances
from the EnKF-derived error samples generally leads to decreased 6 hour forecast
error versus using the samples computed from the operational covariances. Only in the
tropics, where the error from the three experiments are very similar, is this improvement
not seen. If we assume the extent and impact of the sampling error is similar for both
the BSAMP-128 and ENKF-ENS experiments, then this result also provides an estimate
of the improvements that can be expected if the sampling error could be removed when
estimating covariances from the EnKF by using a larger ensemble.

(c) Verification of 5 day forecasts
The impact of the new background error covariances on 5 day forecasts was also

evaluated. The forecasts were produced from the analyses of the control experiment and
of the six experiments with background error covariances estimated from the perturbed
3D-Var and EnKF. Analyses from 00 UTC and 12 UTC, 24 May 2002 to 2 June 2002
were used to initialize integrations of the operational configuration of the GEM model
that uses a higher horizontal resolution (0.9

�

) than was used in the forecast-analysis
experiments.
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Figure 14. Std dev of the difference between the radiosonde observations and the 6 hour forecast from the CNTL,
PERT-HI, PERT-ENS and PERT-HYB 3D-Var assimilation experiments are shown in panels (a)-(c). The same
statistics are shown in panels (d)-(f) for the CNTL, ENKF-HI, ENKF-ENS and ENKF-HYB 3D-Var experiments.
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Figure 15. Std dev of the difference between the radiosonde observations and the 6 hour forecast from the
CNTL, BSAMP and ENKF-ENS 3D-Var experiments.

The statistics of the differences between radiosonde observations and the 5 day
forecasts from the CNTL, PERT-HI, PERT-ENS and PERT-HYB experiments are shown
in the upper panels of Fig. 16. The impact of using background error covariances derived
from the perturbed 3D-Var is positive on the std dev for winds at 250 hPa by about
1 m s

���
and for geopotential height at 500 hPa by about 0.8 dam in the southern

extra-tropics. For these variables the hybrid covariances (PERT-HYB) lead to the most
improvement.
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Figure 16. Std dev of the difference between the radiosonde observations and the 5 day forecast from the CNTL,
PERT-HI, PERT-ENS and PERT-HYB 3D-Var assimilation experiments are shown in panels (a)-(c). The same
results from the CNTL, ENKF-HI, ENKF-ENS and ENKF-HYB 3D-Var experiments are shown in panels (d)-(f).

Similar results are shown in the lower panels of Fig. 16 for the forecasts produced
from the CNTL, ENKF-HI, ENKF-ENS and ENKF-HYB experiments. For these ex-
periments the impact on the 5 day forecasts is generally a small improvement to the
winds and geopotential heights. The maximum improvement to the winds is again about
1 m s

���
in the southern extra-tropics when the ensemble representation of the corre-

lations is used (ENKF-ENS). For the geopotential heights, the maximum improvement
is only about 0.2 dam in the northern extra-tropics, again when using the ENKF-ENS
covariances.

6. CONCLUSIONS

By examining the estimated background error covariances, we find that the per-
turbed 3D-Var and EnKF approaches produce covariances substantially different from
those used operationally. Some of these differences include: the horizontal structure
of the background error variance is more realistic; the mass-wind correlations due to
geostrophy are weaker; the effects of orography are resolved by using an ensemble
representation of the correlations; and flow-dependent structures in a dynamically active
meteorological situation are captured using EnKF-derived covariances.

Consistent with previous studies (e.g. Hamill and Whitaker 2001), we conclude
that spatial localization of the background error correlations is essential to reduce the
sampling error when the correlations are estimated directly from a small ensemble
of error samples. From the experiments using random samples generated from the
operational background error covariances (Section 4d) it is clear that without sufficient
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localization the analysis is unable to fit the observations. As the localization length scale
is decreased, however, the analysis draws towards the observations even more than when
the true covariances are used. At this point, we can conclude that the localization length
scale is too short. The length scale necessary to provide a similar fit to the observations
as when using the true covariances depends on the number of error samples from which
the covariances are estimated. However, applying this same localization to the true
covariances causes them to be substantially altered as evidenced by the increased fit
to the observations.

One could expect that the results from using the perturbed 3D-Var or EnKF-derived
background error covariances to be different than when using the operational 3D-Var co-
variances only for dynamically unstable regions or periods. In these cases the dynamics
amplify the errors in the initial conditions and as a consequence the relative impor-
tance of the simple estimate of the model error covariances is reduced. We saw that,
on average, the model error perturbations in the perturbed 3D-Var experiments are very
important, especially in the extra-tropical troposphere. Since the model error perturba-
tions for both the perturbed 3D-Var and EnKF are generated using error covariances that
resemble the background error covariances of the operational system, the model error
component of the estimated background error covariances is very similar to those used
in the BSAMP experiments. But, the results of Section 5b show that the use of the EnKF
covariances produces better 6 hour forecasts than the BSAMP-128 experiment. Use of
the covariances estimated from the perturbed 3D-Var error samples also improved the
6 hour forecasts for geopotential height and humidity in the extra-tropics relative to the
BSAMP-128 experiment. Therefore we can conclude that the component of the error
samples from the perturbed 3D-Var or EnKF that originates from the propagation of
initial condition error improves the quality of the estimated error covariances beyond the
quality of the covariances from the operational 3D-Var. Consequently, one can expect
that a reduction in the sampling error (by increasing the ensemble size) will enable the
perturbed 3D-Var or EnKF approaches to produce error covariances leading to improved
forecasts relative to the operational system. To the extent that the differences between
the BSAMP-128 and CNTL experiments are representative of the effects of sampling
error in the experiments using error samples from the perturbed 3D-Var or EnKF, this
provides an indication of the magnitude of the expected improvements. This represents a
potential additional improvement to the 6 hour forecast error std dev (from using a much
larger ensemble size) of up to 0.3 m s

���
for wind components, 4 m for geopotential

height and 0.9 K for dew-point depression (from Fig. 15). However, additional research
is required to confirm this preliminary result and to identify any effect that the simpler
structure of the operational background error covariances may have on the approach.

This study focused on the use of background error covariances estimated from
methods that attempt to more realistically sample and represent the covariances in a vari-
ational assimilation system. Comparisons with the results of Houtekamer et al. (2003)
demonstrate that when using errors samples obtained from the EnKF, the 3D-Var could
be made to closely reproduce the mean analysis produced by the EnKF system (not
shown). However, one benefit of using a variational system is the flexibility to use var-
ious ways of representing the correlations including the use of hybrid covariances. Ad-
ditionally, if the tangent-linear and adjoint versions of the forecast model are available,
the extension to 4D-Var is relatively straightforward. This approach is thought to be an
improvement over 3D-Var mostly due to the ability to use data closer to the measurement
time. Even though 4D-Var implicitly propagates the covariances over the assimilation
window, it is not practical to explicitly compute these flow-dependent background error
covariances for use in the subsequent analysis. Therefore, it is envisaged that a system
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using flow-dependent error covariances produced at regular intervals by the EnKF and
assimilating all the data within the interval with 4D-Var could possibly produce better
analyses than either the EnKF or 4D-Var (with stationary background error covariances)
alone. The merits of such a system are discussed by Lorenc (2003). A similar type of
system was evaluated at the European Centre for Medium-Range Weather Forecasts
by Fisher and Andersson (2001), however with the flow-dependent background error
covariances computed using singular vectors. They found no significant improvement
over the use of 4D-Var with stationary background error covariances and therefore aban-
doned the approach due to the high computational cost of obtaining the singular vectors.
At CMC, 4D-Var will soon replace 3D-Var as the operational analysis system and the
EnKF is already being developed to initialize the operational probabilistic predictions.
Consequently, the ensembles from the EnKF could be used to provide flow-dependent
background error covariances to 4D-Var at no extra computational cost. This will be the
subject of future research.

Finally, the two approaches examined in this study for generating samples of
background error require both the observation and model error covariances as input. The
tuning procedure implemented in the perturbed 3D-Var experiments allows the model
error variances to be estimated from the innovations, however, this procedure itself
relies on the accuracy of the observation error variances. This represents a fundamental
limitation for all approaches: the innovations are the only source of information on
the true error, but their is no way to separate the contributions of observation error
and background error (where the background error is composed of model error and
error originating from the previous analysis) without employing additional assumptions.
For example, if the observation errors are assumed to be spatially uncorrelated and
the background errors correlated, then given a sufficiently dense observing network
the innovation variance can be partitioned between the observation and background
components and the background error spatial correlations estimated (Hollingsworth
and Lönnberg 1986). Though such assumptions are necessary to separate the two
error components, they can not be independently verified from the innovations. More
generally, if it is assumed that the covariances only depend on a sufficiently reduced
set of parameters, then the approaches of Dee (1995), Talagrand (1999) and Desroziers
and Ivanov (2001) may be useful for improving both the observation and model error
covariances that will be necessary to obtain the maximum benefit from the perturbed
3D-Var and EnKF approaches.
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APPENDIX A

Adaptive tuning of model error variances
Here, the technique is described for computing the adaptively tuned scaling factors

applied to the model error variances. The scaling factors for wind components and
temperature are allowed to depend on vertical level and are independently computed
for three latitude bands: northern extra-tropics (north of 20

�

N), tropics (between
20

�

N and 20
�

S) and southern extra-tropics (south of 20
�

S). Consequently a total of
168 parameters are estimated at each analysis time. First, the difference between the
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forecasts from the perturbed and unperturbed experiments is computed for a particular
analysis time and projected into observation space (with respect to only radiosonde wind
and temperature observations). For each latitude band and vertical level the variances
of these differences are added to those of the observation error covariance matrix. By
adding the model error variances (also projected into observation space), the result is the
simulated innovation variances. These simulated variances should equal the variances
computed from real innovations, that is the difference between the observations and the
background state from the unperturbed analysis-forecast experiment. All quantities in
the resulting equation

var
� � � � ������� 
 �2� � � var

� � � ���
	�� � 
 ��� � � ������� 
�� 	 diag
� � 
 	

var
� � ���� *�� 
 �&%

(A.1)
are known except the model error,

�� *��
. The operator diag

��� 

represents a vector

containing the diagonal elements of the matrix
�

. The variances (var) and average in
Eq. (A.1) are computed by incorporating all observation locations for a given vertical
level and latitude band. It should be noted that the innovation variances (the right side of
Eq. (A.1)) are averaged over the 2 week period of the experiment since it is the stationary
component of background error that we wish to sample. By making the substitution

var
�"� ���� *�� 
�� ��� � ��� %�� 


diag
� � B

* � � � � 
 % (A.2)

where B
* � � is the currently available background error covariance matrix, an equation

for the scaling factor
�

as a function of the indices for latitude band (
�
) and vertical level

(
�

) is obtained:� � ��� %�� 
 � var
�"� � � ������� 
 �2� � � var

�"� � ���
	�� � 
 ��� � � ������� 
�� � diag
� � 


diag
� � B

* � � � � 
 %
(A.3)

under the constraint that
� � ��� %�� 
�� �

. This calculation is performed at each analysis
time for wind components and temperature. The model error perturbations for humidity
are then computed using the temperature scaling coefficients. Similarly, the surface
pressure perturbations are scaled using the coefficients computed for wind at the lowest
level. This was done because the innovation statistics for surface pressure and the
humidity variable used in the 3D-Var were not readily available with existing software.

APPENDIX B

A spatially localized ensemble representation of the background error correlations
In this appendix, we consider how an ensemble representation of the correlations

with spatial localization can be efficiently implemented in a variational assimilation
framework. The correlation matrix estimated directly from an ensemble of background
error samples is

C
	 ��� � �

�
	 � � V

���54 ��� �"!# � � �%$ � $ � �"& V
���54 � %

(B.1)

where $ � is the deviation of the ' th ensemble member from the ensemble mean, V is
a diagonal matrix containing the ensemble spread variances and �

	
is the size of the

ensemble. To precondition the minimization, as in the operational 3D-Var, only the
square-root of the background error covariance matrix is required and is given by

C
�54 �	 ��� �)( �

�
	 � ��* �54 �

V
���54 �,+ $ � % $ �

% 6 6 6 % $ � !�- % (B.2)
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where the object in brackets is the � � by �
	

matrix containing the deviations of all
ensemble members from the ensemble mean. Therefore it is clear that, without imposing
additional constraints, the rank of such an ensemble representation of the correlation
matrix and the dimension of the control vector can not be greater than the size of the
ensemble.

The localization procedure consists of simply computing the Schur product (element-
wise matrix multiplication) between the estimated correlation matrix and a prescribed
correlation matrix with correlations close to one for separation distances where the esti-
mated correlations are deemed reliable and approaching zero outside this range (Gaspari
and Cohn 1999). Houtekamer and Mitchell (2001) describe the implementation of lo-
calization in the context of an EnKF that explicitly solves the linear analysis equation
for each of a series of observation batches. To implement localization in a variational
analysis system with preconditioning, the square-root of the localized ensemble repre-
sentation of the correlations can be expressed as

C
�54 �	 ��� � �

�
	 � ��
 ���54 �

V
���54 ���

diag
� $ � 
 L

�54 � %
diag

� $ �



L
�54 � % 6 6 6 % diag

� $ � ! 
 L
�54 ��� %

(B.3)
where L is the prescribed correlation matrix used for localizing the ensemble correla-
tions and the operator diag

� $ 
 represents a matrix with the vector $ along its diagonal,
but otherwise containing zeros. For both horizontal and vertical localization the 5th-
order piecewise rational function given as equation (4.10) in Gaspari and Cohn (1999)
was used. Through the localization procedure, the rank of the correlation matrix is in-
creased to at most �

	��
rank

�
L


. However, since the correlations in L are smooth and

relatively large-scale, the dimension of the problem can be reduced by using a truncated
spectral expansion to represent these correlations.
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