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Atmospheric Data Analysis

Goal: To produce a regular, physically consistent,
four-dimensional representation of the state of
the atmosphere from a heterogeneous array of
INn-situ and remote instruments which sample
imperfectly and irregularly in space and time.
(Daley, 1991)
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Approach: Combine information from past observations,

brought forward in time by a model, with information from
new observations, using

— statistical information on model and observation errors
— the physics captured in the model

Observation errors
— Instrument, calibration, coding, telecommunication errors
Model errors

— “representativeness”, numerical truncation, incorrect or missing
physical processes

Analysis = Interpolation + Filtering




Why do people do data assimilation?

1. To obtain an initial state for launching NWP forecasts
2. To make consistent estimates of the atmospheric state
for diagnostic studies.
* reanalyses (eg. ERA-15, ERA-40, NCEP, etc.)

3. For an increasingly wide range of applications (e.g.
atmospheric chemistry)

4. To challenge models with data and vice versa
« UKMO analyses during UARS (1991-5) period



Data Assimilation ———»

Producing a Numerical Weather

Forecast

1. Observation

Collect, receive, format and process the data

quality control the data

2. Analysis
« Use data to obtain a spatial representation of the atmosphere
3. Initialization
Filter noise from analysis
4. Forecast

Integrate initial state in time with full PE model and
parameterized physical processes




Data Assimilation Cycles
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Observations currently
In use at CMC




Radiosonde observations use
GDAS (122)
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SYNOP and SHIP observations
used in GDAS

SYNOP/SHIP observations 2003102518
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Buoy observations used in GDAS
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Aircraft observations used in GDAS

Aircraft observations 2003102512
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Cloud motion wind observations
used in GDAS

Atmospheric Motion Vectors 2003102518
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AMSU-A observations used In
GDAS
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AMSU-B observations used In
GDAS

1815 NOAA-15 1681 NOAA-16 1528 NOAA-17
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GOES radiances used in GDAS

GOQES Radiances 2003102518
922 GOES-W
=130 —120 =40 — G0 =30 0 33 80 S0 120 150

=130 =120 =5 —&0 —ah [4] Al 4] S0 120 Tal




Underdeterminacy

Z = observation vector

X = state vector

Model Lat x long x lev x Data Reports x items X
variables levels
CMC global oper. | 400x200x28x4 sondes 500x5x15
=9x10° AMSU 6000x20
CMC meso-global | 800x400x58x4 SM, ships, buoys | 4000x5
= 7x107 aircraft 4000x3
N “ Sat. winds 8000x2
—=~ 45 TOTAL 2x105
N Z

Cannot do X=f(Y), must do Y=f(X)

Problem is underdetermined, always will be
Need more information: prior knowledge, time evolution, nonlinear

coupling




A Scalar Example with a single observation

The analysis equation is:

%% = %P WI(xOPY — %59, (3)

Subtract the truth from both sides:

Xa—Xt=Xb—Xt+W(XObS—Xt—Xb—|—Xt)

Analysis error & = -
Background error e = xb_xt
Observation error ~ €9P5 = x©°bS _ xt

The analysis equation in terms of errors is:

& = eb + W(eObS B eb) (4)




A Scalar Example with a single observation

Take an ensemble average:

& el o= el 5 HWI(C 28 n — o & 5).
If < &® >=< €°PS >= 0, then < €% >= 0.
Square (4) and take an ensemble average:

< (ea)Q S—=c (66)2 > +W2 < (Eobs . Eb)z > +2W < Eb(eobs . eb) S
Minimize < (e%)2 > with respect to W assuming < €%¢°PS >= 0:
d < (e2)? > JdW = 2W € (e2P5)° + (")° > -2 < (") >=0
Let

(O_ObS)Q —< (60b3)2 . (0_6)2 —< (Gb)Q, (O_G)Q —< (Ea)Q S .
so that

(%)
"~ (b)2 4 (g0Obs)2’

W (5)




A Scalar Example with a single observation

Note that 0 < W < 1. If (¢°P%)2 = 0 and W=1. If (¢*)2 = 0 and W=0.
With this choice of weight,

(672 = (") 72+ (%), (6)
The analysis equation may be written as:
1
x® = xP 4+ W(x°PS —xb), w = .
+W( ) g

where o = (o°P%)2/(o?)2.
o If (69P9)2 << (ob)2, then a = 0, W=1 and x® = xOPS 54 = 50bs,
o If (6°P%)2 >> (oP)2 then a >> 1, W=0 and x* = x°, ¢ = o?.

o If (6°P%)2 = (¢)2, then W=1/2 and x? = 0.5(xP4-x°P%), (62)2 = (o?)2/2 =
(00b5)2/2_



Two observations on a 1-D grid

a) Case 1: a single observation

@ (@)
observation analysis
gridpoint

b) Case 2: Two isolated observations

@® © @
observation analysis observation
gridpoint
c) Case 3: Two collocated observations
2 O]
observations analysis

gridpoint

Now consider the case of an analysis grid point influenced by two observations. Both
obs are of the same type and so have the same error variance of (¢7)2. Also, the
background error variance at both obs stations is assumed the same:

2 el )? =< ()2 5=[o")’

10



The obs error is assumed horizontally uncorrelated, i.e.

< (e1)(en) >=0.
The obs and background errors are uncorrelated:

< (D)(ey) >=0
where ¢, d € {0, 1,2}. The analysis equation is

X = x% + w1 (X7 — xli) + wo (X5 — xg). (10)

To determine the weights applied to each observation according to a minimum vari-
ance principle, first form the analysis error variance from (10) and apply the expec-
tation operator.

< (e§)? >= (692 + (w? + w3)[(¢")? + (¢*)?]
—2w1 p19(a?)? — 2wopop(c?)? + 2wiwop12(a?)? (11)
where we have defined

bl e By b B by 2 b b by 2
< €ye1 >=p10(07)%, < €yes >=poo(07)*, < ej1e3 >=p12(0”)

and where all terms involving correlations of observation and background errors have
been dropped.

11



Now minimize < (€&)? > w.r.t. wy and wy:

w1(1+ a) +wop12 = p10
wip12 +wa(l+a) = pog
where
a = (a")?/(c")?.
Solving for wq and w» yields:
= p10(1 + @) — p12p20 (12)
(1+0a)2 -,
. p20(1 + a) — p12p10 (13)
2 At+a)2—p2,

With these optimal weights, (11) becomes

- (1 +a)(pip+r5g) — 29101)20012} | (14)

N2 s . b2
< (¢8)? >= (o) {1 e i

12



Case One: A single observation

a) Case |: a single observation

@ (o)
observation analysis
gridpoint

What is the analysis at gridpoint O if only the observation at gridpoint 1 is available?
In this case, the analysis equation, (10) reduces to

x§ =3 4 w1 (X —x3),
the weight, (12) becomes

P10
w1 =T (15)
and the analysis error variance in (14) becomes
2 by 2 P%o
< (€g)” >= 1— , 16
(€5) (c”) { T a} (16)

The weight given to an observation depends on the distance between it and the
analysis grid point and the way the background error correlation varies with distance.

13



Case Two: Two isolated observations

b) Case 2: Two isolated observations

® © ®
observation analysis observation
gridpoint

Now the obs are located on either side of the analysis grid point. Assume that p1-, =~
0, and that p1g = pog = p. In this case, (12) and (13) reduce to

p
w1=w2m1+a, (17)

and (14) reduces to

14+«

Comparing (16) and (18) reveals that having 2 observations results in a lower analy-
sis error than having only 1 observation.

2
< (8)* 5= (05)2{1— 2p } (18)

Two obs are better than one.

14



Case Three: Two collocated observations

c) Case 3: Two collocated observations

o ©

observations analysis
gridpoint

What if, instead of being located on either side of the analysis gridpoint, the two
observations are collocated? In this case, p1> = 1 and p19 = ppg = p S0 that

p
W= = (19)

and

< ()2 >= (12 {1 2 (20)

. 2+af
The weight given to the collocated observations is less than that for the isolated ob-
servations. The analysis error is also smaller when there are isolated observations.
Why? More information is obtained for independent observations. Two collocated
observations do not provide independent information so they each contribute less
than if they had been independent.

Two isolated obs are better than two collocated ones.
15



Case Four: Two observations on a 1-D network

If you have two observations, where is the best place to put them? To find out, hold
one the the observations fixed at x/L=-2. The analysis gridpoint is at x/L=0. The
second obs’s location will vary with x from -oo to +oo. Daley’s Fig. 4.7 plots the
normalized analysis error variance, < (68)2 > /(6?)2 for &3 = ap = 0.25 and
p10 = 0.406. To determine po(, and pq,, the covariance model was used:

b _ |Az| _\Am\)
p(Am)_(1+ L)exp( 7 )
_ p10(1 4+ a) — p12p20 W — p20(1 4+ a) — p12p10
(1+a)2—pi, Q+a)2—pir

Obs 1 analysis

correlation function

0.8

06

0.4

nz

NORMALIZED ERROR
5

Daley (1991)
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Optimal Interpolation
Consider a model state vector,

x = (X1,X0, ..., Xn) .

The background, xb, and analysis, x“ are both on this grid and are n-vectors. For an
obs network of mm measurements, define the obs vector as

-
%= (24 ;28 s 55, 8m)

Since the obs are not necessarily at analysis grid points, we need a spatial interpola-
tion from the observation locations to the model grid. Let's introduce H, the forward
model, which maps the model state to the obs variables and locations. H is nonlinear
in general. Our analysis equation is then

nXxm
x% = x* + K(z — H(x?)). (21)
nxl nxl mx1l mxl

W was renamed K.
The stochastic measurement equation is:

z=z'4+v (22)

v is the measurement error. z! is the “true” atmospheric quantity being sensed.

17



To allow an imperfect forward model operator we write

H(xY) Hz! — HxY) + v
= HEHH+v (23)

Z

where representativeness measurement
- A /
v = [zt — H(x)] + v. (24)

The term is square brackets is called the representativeness error and reflects the
fact that our forward model, H, is not perfect. Recall that H includes a mapping of
model variables to observed variables and a spatial interpolation from the model grid
(or state) to the observed locations. The sum of the measurement and represen-
tativeness errors form the observation error, v. The observation error bias is given
by

g —
and the observation error covariance matrix is:

R=<(v-V)(v-%)T>.

18



OQur errors can then be defined as before, with a new addition:

NXx1l % = x%_xt
nxl e = xb_—xt
mxl v = z— H(Y.

The analysis equation in terms of errors is then

¢ = & +Klz— H()+H(E) — H)]
e® + Ky + H(x" + x — x¥) — H(x")]
e’ + K[v + Héx") + H(x! —x") — Hex")

&

= "+ K[v—-H("]. (25)
The Tangent Linear Forward Model operator is defined as
H= i ; (26)
dX xb

H is the derivative of the forward model operator with respect to the model state
vector and evaluated at the model background state. Thus we have performed a
linearization of the nonlinear observation operator around the background state, im-
plicitly assuming that the truth is not too far from the background.

19



To form the analysis error covariance, multiply (25) by the transpose of itself and
apply the expectation operator:

P’ =P+ K(R+HPHHK' - KHP’ - P'H'KT. (27)

We now minimize the analysis error variance or trace of P? with respect to the weight
K. Thus

Tr(P®
0= d;—%) — 2K(R 4+ HP’HT) — 2P'HT (28)
or, on solving for K:
K=PHT(HP'HT +R)" L. (29)

This is the choice of weight that gives the minimum variance of the estimate. Substi-
tuting (29) into (27) reveals the analysis error covariance for this optimal weight:

P = (I - KH)P®. (30)
Summary of the Ol algorithm:
x? = x4 K[z - H(xY)]
K = PHTHPHT +R)1
pa (I - KH)P?

20



Example: 3 observations

Three observations @
observation

®
observation
(0
analysis gridpoint
@

obsarvation

(31)

< z1— H(EXY) >
< 23— H(xY) >

Xg:Xg—'—[Kl K- K3]|:<32—H(Xb)>

K(HP'HT 4+ R) = PPHT

If the same instrument is used for each measurement and the obs error is uncorre-
lated in space, R = (o")21.

HP'HT = H < e’(e®)T > HT =< (Heb)(He?) T >

P'HT =< eP(e®)T > HT =< (e’)(He?) T >

=
K; < efieg S & eficg o 4 ebeb > & cgeb >
K> < e251 = egeg - eg 5” +I(e")? ) = | < egeg >
K3 <eded > <eeh> < el > < e3ed >

21



Optimal Interpolation in practice

x* = x°+4+Kl[z— H(x")]

K = PHTMHPHT +R)!

P = KRK' +(I-KHP{T-KH)T
Ol for NWP is run at every synoptic hour (00, 06, 12, 182), each day. Observations

are binned into 6 hr intervals centered on the analysis time. The same P? is used
every analysis. Thus we are assuming stationary statistics.

To solve for the weights we need to invert an m x m matrix. For m=10°, this matrix
inversion is too expensive.

1. Assume the generalized interpolation, H, is linear. Then H(x) = H x.

2. Pb is continuous. HP?HT can then be evaluated at observation sites as an
m X m matrix without ever needing to know P? on the model grid, which is
n X n. Linear dynamical constraints can then be applied through modelling of

P,

3. Data selection is used so that the analysis equation is solved n times. Each
equation is then solved for a scalar . By limiting the number of observations
that influence a given analysis point to p (<100), we can further reduce the size

of HP’HT to p X p. Thus the inversion of an m x m matrix has been replaced
by n inversions of p x p matrices.

22



Table 5.1 Characteristics of operational numerical analysis schemes.

-Organization | Present operational analysis | Analysis Analysis forecast
or country methods area cycle Plans
australia . Successive correction . S Hemisph | 12 hours
method
. Variational blending . Regiocnal 6 hours
tochniques
Canada - Multivariate 3-dimensional |. N Hemisph| 6 hours
statistical interpolation |. Regional | (3 hours for the
surface)
France . Successive correction . N Hemisph 6 hours
method, windfield and . Regional
massfield balance through
first quess fields
. Multivariate 3-dimensional
statistical interpolation
F.R.G. . Successive correction . N Hemisph | 12 hours Multivariate
method. Upper-air analyses (6 hours for the statistical
are built up, level by le- surface) interpolation
vel, from the surface Climatology only as |is being deve-
. Variational height/wind ad- prelirinary fields loped
justment
Japan . Successive correction. . N Hemisph | 12 hours Multivariate
e  segional sl
. Height field analyses are i tgpg ed
- corrected by wind analyses S tes
Sweden . Uni-variate 3-dimensional |. N Hemisph | 12 hours A multivariate
statistical interpolation |[. Regional 3 hours scheme is be-
. Variational height/wind ing tested
adjustment
U.K. . Hemispheric orthogonal Multivariate
polynomial method schemes con-
. Uni-variate statistical | Global 6 hours sidered
interpolation (repeated
insertion of data)
| U.8.A. . Spectral 3~dimensional . Global
analysis
. Multivariate 3-dimen- . Global 6 hours
sional statistical inter-
polation
U.S.S.R. . 2-dimensional statistical |. N Hemisph {12 hours
interpolation
E.C.M.W.F. . Multivariate 3-dimen— . CGlobal 6 hours
sional statistical inter-
polation

Gustafsson (1981)

Ol was the standard assimilation
method at weather centres from the
early 1970’s to the early 1990’s.

Canada was the first to
Implement a multivariate

Ol scheme.



Filtering Properties
The Ol analysis equation is: K

A

x% = xb + ;HT(HPHT 4 R)_I[z — H(Y)] (32)

For simplicity, P = P?. Assume H = I. Then define y = [z — H(x%)]. Then (32)
can be written as:

x¢ —xt=d=PP+R) 1y
or

d= Ay

where
A=PP+R)1=0+RrRP 1)L

To simplify A further let P = (o%)2C. Also assume that all observations are from
the same type of instrument so R = (¢")?I. Finally, define the eigenvalues and
eigenvectorsof Cas A and e, i.e.,

Ce=)e Cle= e

Then,

23



Finally, we see that,

1 (O.?’)Q

Ae=(I+RP Hle= e, a= ;

1+3 (%)

If the observation increment can be written as a superposition of eigenvectors of C,
l.e.,

N
y= > ce;
=1
then
N N 1
dZAyZZCiAe?;ZZCi 1 ~ | €i
=1 i=1 + X

Large eigenvalues (large scales): If \; > athen1/(1 4+ a/)\;) — 1
Small eigenvalues (small scales): If \; € athen 1/(1 4+ a/);) — O.

The spectral structure of the correlation matrix for background errors determines the
filtering properties of the analysis.

If the background error correlation function has most energy at large (small) scales,
the Ol will act as a low (high)-pass filter.

24



Estimation theory

The general problem of data assimilation is this: given a set of observations and a
model of some physical parameters, what does knowledge of the observations tell
us about the model state?

a posteriori p.d.f.

Pzz(X,2) o pz|$(z|x)pm(x)

Pyl (X|2) = = (33)
T el | pz(2) pz(2)
where p.(z) #% 0. How do we choose an estimator, X(z), based on pxlz(xlz)’?
Let's try to minimize the risk 7 or expected cost function, J:
oo
J® = EUE) = [ I@pa(x)dx
OO OO >
= / / J(X)pzz(x,2z)dzdx (34)
—0Oo0 J—C0

where

P
|
o
|
")

25



The quadratic cost function is
J(%) = x| =x"Sx (35)

where S is a non-negative definite, symmetric matrix. The Minimum Variance esti-
mator yields the conditional mean:

vy = E(x|z). (36)
The uniform cost function is
m={] 53: (37)
MAP estimation provides the maximum or “mode” of the a posteriori p.d.f.
)
acPelz(X12) — = 0. (38)

The absolute error cost function is
J(X) = |X| =[x —X|. (39)

The estimator with the minimum absolute error is the "“median” of the a posteriori
p.d.f.

26



Example: Estimation of a constant vector
Consider the measurement equation,

z=Hx+4v. (40)
Assume x is N(u,P), v is N(0O,R) and x and v are independent.
For a given z, we want to know

P2z (z,X) . pz|m(z|x)p$(x)

== 41
Pl = ) -(2) “
Pz :E(Za X) — 1 1
’ (Qﬁ)n/2|P‘1/2 (Qﬂ)m/2|R|l/2
X exp {—%(z —Hx) 'R 1(z - Hx) — %(x — p,)TP_l(x — p)} ‘
(z) = L exp{—l(z —Hp)"(HPH" +R) 1(z—-H )}
P = M2 HPHT + R|1/2 2 o a

27



After lots of algebra, we can show that

[HPH' + R|1/2 o
(2m)™/2|P|1/2|R|1/2

1
Pr(X|2) = p{-x-RTPIx-R)} @
where

x=Py,(H R 'z+ P 1p) (44)
and

P,l=P14+H'RIH. (45)

28



Minimum variance estimator: Ol

For our example, the MV estimator is the the mean of (42):
gy = Exz) =P 1+H' R TIHD)THR 1z4+P ). (45)
Using the Sherman-Morrison-Woodbury formula
(P 1+H R H) 'H' R !=PH'"(HPH" +R)! (46)
and adding and subtracting e from the right side gives
XMy = p+K(z—-Hpu)
= x4+ K(z — Hx?) (47)

K=PH'(HPH' +R)! (48)

28



MAP estimator: 3D-Var

For MAP estimation, it is sufficient to maximimize the numerator of

Prz(X,2) _ Prfa(2[X)pz(X)

p=(z)  p(2)
since the p.(z) is not a function of x. In our example, assuming Gaussian statistics,
the MAP estimator could also be obtained by minimizing:

Jvap(x) = (z—Hx) 'R (z-Hx)+ (x—p) P ' (x—p). (49)
This is the 3DVAR cost function. In exercise 3, the solution is

Xmv = 1+ K(z — Hp).
K=PH'(HPH' +R)! (50)

pm|z(x|z) —_

For linear observation operators, and Gaussian background and observation errors,
Ol and 3DVAR are equivalent (theoretically).

In practice, approximations are made (e.g. data selection in Ol or doing only a few
descent steps in 3DVAR). Thus, the details of the implementation will determine the
performance of our DA system.

In Ol, we could solve the matrix equation variationally to get PSAS:

y = (HPH' +R) '(z-Hp)

XMV p+PH'y. (51)
29



Data Selection

Data assimilation concepts and methods

0
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Figure 9. One OI data selection strategy is to assume that each analysis point is only sensitive to observations
located in a small vicinity. Therefore, the observations used to perform the analysis at two neighbouring points x
or x, may be different, so that the analysis field will generally not be continuous in space. The cost of the analysis

increases with the size of the selection domains.

! obs 1 I
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Figure 10. A slightly more sophisticated and more expensive Ol data selection is to use, for all the points in an
analysis box (black rectangle), all observations located in a bigger selection box (dashed rectangle), so that most
of the observations selected in two neighbouring analysis boxes are identical.
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The effect of data selection

200 hPa CHI (psas0101: 28 Aug 1985, 127)

- : =

Cohn et al. (1996)



The effect of
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Advantages of 3D-var

JX)=(x=x")" B (x=x")+(z-H(X))"R™(z-—H (X))

1. Obs and model variables can be nonlinearly
related.

« H(X), H, HT need to be calculated for each
obs type

e No separate inversion of data needed —
can directly assimilate radiances

 Flexible choice of model variables, e.qg.
spectral coefficents

2. No data selection is needed.




With covariances in spectral space,

longer correlation lengths scales are

With flexibility of choice of obs,
permitted in the stratosphere

oW

can assimilate many new types
of obs such as scatterometer
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Figure 10. Potential vorticity on the 475 K isentropic surface in northern mid- to high latitudes at 12 utc Figure 1. Winds beneath an orbit which
29 January 1996: (a) 3D-Var; (b) OL
Andersson et al. (1998)

passes over tropical cyclone Karen located at 20°N, 52°W (large dot)
on 31 August 19953: (a) pbserved by scatterometer; (b) background (six-hour) forecast valid for the same time; (¢)
3D-Var analysis. (b) and (c) are interpo;ated to the positions of the scatterometer observations.

Andersson et al. (1998)
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Impact of Direct Assimilation of Radiances

Anomaly = difference between forecast and climatolgy
Anomaly correlation — pattern correlation between forecast anomalies and
verifying analyses

MNCEP 5-day Forecast Anamaly Correlation (500hPa)
Reanalysis and Operational Scores
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Fic. 6. Comparizon of operational and reanalysiz 5-day forecast anomaly cor-
relations for the WH and the SW. The large improvement in operational forecasts
observed 1n 1996-97 1s due, to a large extent. to the direct assimilation of TOVS
racdiances (data courtesy of R Kistler).

Kalnay et al. (1998)



Weather centers using 3D-var operationally

Center Region Started Opera- Ref.
tional

NCEP U.S.A. June 1991 | Parrish&
Derber (1991)

ECMWF Europe 1987 Jan. 1996 | Courtieretal.
(1997)

CMC Canada 1993 June 1997 | Gauthier etal.
(1998)

Met Office |U.K. Mar. 1999 |Lorencetal.
(2000)

DAO NASA 1997 Cohn et al.
(1997)

NRL US Navy 20007 Daley& Barker

(2001)




Summary

Data assimilation combines information of observations
and models and their errors to get a best estimate of
atmospheric state (or other parameters)

For Gaussian errors, 3D-var and Ol are equivalent in
theory, but different in practice

3D-var allows easy extension for nonlinearly related obs
and model variables. Also allows more flexibility in
choice of analysis variables.

3D-var does not require data selection so analyses are
In better balance.

Improvement of 3D-var over Ol is not statistically
significant for same obs. Systematic improvement of
3DVAR over Ol in stratosphere and S. Hemisphere.
Sggreds continue to improve as more obs types are
added.



Covariance Modelling

1.Innovations method
2.NMC-method
3.Ensemble method




The role of the forecast error covariance
matrix in analysis

model space (nx1) observation space (mx1)
Xy =X, + K[z - H(xp)]
(mxm)

K = BHT(HBHT + R)*.
For a single observation, at gridpoint i
K =B./(c,2+0,2) = ¢ B,

The forecast error covariance matrix determines the
spatial influence of the observations.



Background error covariance maitrix

P® = <(xb —xt)(xb —xt)T>

olf X is 107, P is 107 x 10".

*\With 10° obs, cannot estimate PP.
Need to model PP,

*The fewer the parameters in the model,
the easier to estimate them, but

less likely the model is to be valid




1. Innovations method

 Historically used for Optimal Interpolation
(e.g. Hollingsworth and Lonnberg 1986,
Lonnberg and Hollingsworth 1986, Mitchell et al. 1990)
e Typical assumptions:
eseparability of horizontal and vertical correlations

Cb(xi:Yi’Zi’Xj’Yj’Zj):CZ (Xi’yiixjiyj)c\k;(zi’zj)

*Homogeneity | / m
CE (%, Y1 %, ¥;) = C2(1. 0,) Ay

*|sotropy o8|
Co (%, Y1 X5, ;) = C3(r,) |

7



Z—Z CORRELATION

Innovations method of computing B Matrix
If H is linear then z — H(x?%) = Y- He?.

Instrument-+ \Background error
representativeness
T

<(v—He")(v-He"T> = <)) >+H<eb® >HT

- H<e?M™> - <v(eHT>HT
Dec. 15/87-Mar. 15/88 Choose obs s.t. these terms =0
radiosonde data. = R+ HP'HT
Model: CMC T59L20 = (") 1+HPHT.

1.00

700700

0.75
Assume homogeneous, isotropic
correlation model. Choose a
continuous function p(r) which has
only a few parameters such as

L, correlation length scale. Plot all
innovations as a function of distance
only and fit the function to the data.
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Obs and Forecast error variances
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FIG. 5. Vertical profile of the observed wind residual (meters per
second) (1.e., total perceived forecast error) denoted TOTAL, and

the corresponding profiles of prediction and observation error.

FiG. 8. Vertical profile of the observed height residual (m) (i.e.,
total perceived forecast error) denoted TOTAL, and the corresponding
profiles of prediction and observation error.

Mitchell et al. (1990) Mitchell et al. (1990)
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Multivariate analyses

For K observation locations, define:

XT = [p].:ul:vlapQ:uQaUQ:'"apK}uKavK]-
[ b11 b12 ... big Con (. 10) Con(rin) Con(rsize)
b 621 622 b2K pp\tjs k pu\ty, 1k pu\lqs) 1k
P"= E o ybij = | Cup(rj,rg) Cuu(rj,rg) Cup(rj, )
| b1 bgo ... bgK | C'Up(rj’rk) C'vu(l'j,rk) va(rj:rk)

If r, = (:cz-,yi), r; = (:Ej, yj) and u; = u(xj, yj), vy = ’U(xj, yj) then
Cpu(r;, r5) =< pi,uj > .
Now introduce a linear relationship, e.g.

_ 09 _ 09
fu= oy’ fv_@a:'
Then
| 0 ; 10
p 1 J1r ) Iy 23 %3 f @ayj fé’yj 1%
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Assume homogeneity. Define,

P=247, EF=a-z,  §=yi-y
Then,
o _90 o __9
31}@ 3@" ayj ag
and similarly for z derivatives. Then
Cpp(ri:rj) = < ¢jp; >
10
Cpu(ri:rj) = _Cup(riarj) — f@H < Qﬂ’zﬁf)g
10
va(ri:rj) — _O’Up(ri:rj) - fa.. < Qb?,qu
1 92
Cuu(r?;,rj) - an 5 < Cﬁéf;bj
1 82
C’U'U(ri,rj) — f2 ax < éﬁ‘i’g
1 92

Cuv(rz‘;rj) — C'Uu(réarj) = < ¢ipj >

209707
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Multivariate correlations

Q,

0.2. The scale parameter, c, is that obtained at 500 mb. Tic marks along margins are 250 kin apart.

3and a =

FIG. 17. The complete set of horizontal prediction error correlations for the variables z, u and v based on (7a) with

N

Mitchell et al. (1990)



Figure 4.13 The standard deviation of the 250 mb geopotential background (forecast) error
over North America (m). (After Lénnberg and Hollingsworth 1986)
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Figure 4.5 Isotropic component of 500 mb geopotential background (forecast) error correlation
in different parts of the globe. (After Baker et al. Mon. Wea. Rev. 115: 272, 1987.
The American Meteorological Society.)

If covariances are homogeneous,
variances are independent of space

Covariances are not
homogeneous

If correlations are homogeneous,
correlation lengths are independent
of location

Correlations are not
homogeneous



VN X ~——y

Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-
casts of surface pressure in a reference station
(stockholm) and other stations.

Gustafsson (1981)

Correlations are not
ISotropic

Figure 4.2 Observed-minus-background (climatology) correlation for the 500 mb geopotential
field over Australia. All correlations are with respect to the observation station at
the origin. (After Seaman, Aus. Met. Mag. 30, 133, 1982. AGPS Canberra,
reproduced by permission of Commonwealth of Australia copyright.)

Daley (1991)



Are correlations s

eparable?

If so, correlation length should be

Independent of height.
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Figure 4.12 The characteristic scale of the geopotential background (forecast) error correlation

for the North American radiosonde network as a function of pressure. (After profiles of
Lénnberg and Hollingsworth 1986)

Lonnberg and Hollingsworth (1986)
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Vertical profile of the observed height residual (m) (i.e.,

total perceived forecast error) denoted TOTAL, and the corresponding

prediction and observation error.

Mitchell et al. (1990)



Covariance modelling assumptions:

1. No correlations between background and
obs errors

2. No horizontal correlation of obs errors

3. Homogeneous, isotropic horizontal
background error correlations

4, Separability of vertical and horizontal
background error correlations

None of our assumptions are really correct. Therefore
Optimal Interpolation is not optimal so it is often called
Statistical Interpolation.



2. NMC-method

 Need global statistics

 N. American radiosonde network is only
4000 km In extent defining only up to
wavenumber 10. Vertical and horizontal
resolution is too coarse.

* A posteriori justification: compare resulting
statistics with those obtained using other
methods



The NMC-method
— - ——

-48 -24///\.} Xos = Xyg

Compares 24-h and 48-h forecasts valid at same time

Provides global, multivariate corr. with full vertical and spectral
resolution

Not used for variances

Assumes forecast differences approximate forecast error
Xog —Xag = Xg —Xg ?

Why 24 — 48 ?
24-h start forecast avoids “spin-up” problems

24-h period is short enough to claim similarity with 0-6 h forecast
error. Final difference is scaled by an empirical factor

24-h period long enough that the forecasts are dissimilar despite
lack of data to update the starting analysis

0-6 h forecast differences reflect assumptions made in Ol
background error covariances



NMC-method usage

Center Region |Reference

NCEP U.S.A. Parrish & Derber 1991
ECMWF Europe |Rabier et al.1998
CDC Canada |Gauthier et al. 1999
Met Office |U.K. Ingleby et al. 1996
BMRC Australia | Steinle et al. 1995
Meteo-Fr. |France |Desroziers et al. 1995




Properties of the NMC-method
Bouttier (1994)

~or linear H, no model error, 6-h forecast
difference, can compare NMC P calc. to what
Kalman Filter suggests.

NMC-method breaks down if there is no data
between launch of 2 forecasts. With no data P
IS under-estimated

For dense, good gquality hor. uncorr. obs, P Is
over-estimated

For obs at every gridpoint, where obs and bkgd
error variances are equal, the NMC-method P
estimate Is equivalent to that from the KF.




A posteriori justification:
compare NMC results to innovation-method results

Horizontal correlation length scale

Innovations

a - Phi-tot b) Phi-pred
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Fig. 2. (a) Vertical profiles of the total, or perceived, forecast error of height, together with the contributions to this
Figure 1. Horizontally averaged standard deviations as a function of pressure (hPa) for the mass variable P (dashed

error from prediction error, and the observation error. The unit is metres. (b) Vertical profiles of the prediction
error (copied, from 2a) and of the contributions of the synoptic-scale and large-scale components to the prediction
error. The sum-of the squares of the components gives the square of the prediction error.

Rabier et al. (1998) HoIIi'ngsworth and Lonnberg (1986)

line) (100 m*s?), mass variable modified as explained in section 4 of the text (long-dashed line) (100 m*s~),
wind components (solid line) (m s~') and temperature (dash-dotted line} (K).



Different vertical correlation
lengths for different wavenumbers
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Figpre 9. Vertical correlations for level 18 (approximately 500 hPa) as a function of pressure (hPa) for selected
horizontal wave-numbers: (a) temperature T'; (b) cross-correlation between surface pressure (represented by the
lowest point on the curve) and temperature; (c) the mass variable 7; (d) specific humidity Q. Wave numbers 10,
25, 40 and 55 are shown by solid, long-dashed, dash-dotted and dashed lines respectively.

Rabier et al. (1998)

Different horizontal correlation
lengths for different vertical levels
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3. Ensemble method of calc. B matrix
Buehner (2004), Fisher (1999)
1. Run a control forecast, and a perturbed forecast:
xf = M (x%)
f = MEY 4w

where w is N (0, Q) and Q=s*B. s is a scaling factor computed every 6 hrs and
is a function of latitude band (NH, SH or tropics) and vertical level.

2. Run a control and a perturbed analysis:

x? x! + K(z — H(x))
%4 T +K(z+v - HE)

=
|

where vis N (0,R).
3. Repeat steps 1 and 2 every cycle, for one month or so.
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4. Compute the forecast error:

By definition,
Pé = (eé— < eg >)(e£— & eg >)T >,
Replace < > with time averages, [ ] to get
B ~ [(ef — [ef]) (el — [e{D 1.
e Fisher (1999) uses stochastic physics to represent model error instead of Q.

e Actual EnsKF uses P/ from ensembles in step 2, while Buehner (2004) uses B.
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Figure 3. Estimated background error std dev of (a) streamfunction near 250 hPa ( = 0.258) and (b) tempera-
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Buehner (2004, submitted)



Some final words...

Fifteen years ago, data assimilation was a minor and
often neglected sub-discipline of numerical weather
prediction. The situation is very different today. Data
assimilation is now felt to be important for all climate
and environmental monitoring and estimating the
ocean state. There have been great advances in both
modelling and instrumentation for a variety of
atmospheric phenomena and variables, and data
assimilation provides the bridge between them....

(Roger Daley, 1997)



