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Outline of lectures

• General idea
• Numerical weather prediction context
• Simple scalar example
• Two observations on a 1D grid
• Optimal Interpolation
• Basic estimation theory
• 3D-Variational Assimilation (3Dvar)
• Covariance modelling



Atmospheric Data Analysis
Goal: To produce a regular, physically consistent,     

four-dimensional representation of the state of 
the atmosphere from a heterogeneous array of 
in-situ and remote instruments which sample 
imperfectly and irregularly in space and time. 
(Daley, 1991)

analysis



• Approach: Combine information from past observations, 
brought forward in time by a model, with information from 
new observations, using 
– statistical information on model and observation errors
– the physics captured in the model

• Observation errors
– Instrument, calibration, coding, telecommunication errors

• Model errors
– “representativeness”, numerical truncation, incorrect or missing 

physical processes

Analysis = Interpolation + Filtering



Why do people do data assimilation?

1. To obtain an initial state for launching NWP forecasts
2. To make consistent estimates of the atmospheric state 

for diagnostic studies.
• reanalyses (eg. ERA-15, ERA-40, NCEP, etc.)

3. For an increasingly wide range of applications (e.g. 
atmospheric chemistry) 

4. To challenge models with data and vice versa 
• UKMO analyses during UARS (1991-5) period



Producing a Numerical Weather 
Forecast

1. Observation
• Collect, receive, format and process the data
• quality control the data

2. Analysis
• Use data to obtain a spatial representation of the atmosphere

3. Initialization
• Filter noise from analysis

4. Forecast
• Integrate initial state in time with full PE model and 

parameterized physical processes
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Data Assimilation Cycles



Observations currently 
in use at CMC



Radiosonde observations used in 
GDAS (12Z)



SYNOP and SHIP observations 
used in GDAS



Buoy observations used in GDAS



Aircraft observations used in GDAS



Cloud motion wind observations 
used in GDAS



AMSU-A observations used in 
GDAS



AMSU-B observations used in 
GDAS



GOES radiances used in GDAS



Underdeterminacy

• Cannot do X=f(Y), must do Y=f(X)
• Problem is underdetermined, always will be
• Need more information: prior knowledge, time evolution, nonlinear 

coupling

2x105TOTAL
8000x2Sat. winds
4000x3aircraft

4000x5SM, ships, buoys
6000x20AMSU
500x5x15sondes

Reports x items x 
levels

Data

800x400x58x4
=7x107

CMC meso-global

400x200x28x4
=9x106

CMC global oper.

Lat x long x lev x 
variables

Model

X = state vector Z = observation vector
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Analysis error
Background error
Observation error



















Obs 1 analysis

Daley (1991)
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representativeness measurement
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OI was the standard assimilation 
method at weather centres from the 
early 1970’s to the early 1990’s.

Canada was the first to 
implement a multivariate
OI scheme.

Gustafsson (1981)
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Data Selection



The effect of data selection

Cohn et al. (1996)

OI

PSAS



The effect of 
data selection

Cohn et al. (1996)



Advantages of 3D-var

1. Obs and model variables can be nonlinearly 
related.

• H(X), H, HT need to be calculated for each 
obs type

• No separate inversion of data needed –
can directly assimilate radiances

• Flexible choice of model variables, e.g. 
spectral coefficents

2. No data selection is needed.

))(())(()()()( 1 xzRxzxxBxxx b1b HHJ TT −−+−−= −−



With covariances in spectral space,
longer correlation lengths scales are
permitted in the stratosphere

With flexibility of choice of obs,
can assimilate many new types
of obs such as scatterometer

Andersson et al. (1998) Andersson et al. (1998)
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To assimilate radiances directly, H includes an 
instrument-specific radiative transfer model

))(())(()()()( 1 xzRxzxxBxxx b1b HHJ TT −−+−−= −−



Kalnay et al. (1998)

Impact of Direct Assimilation of Radiances
Anomaly = difference between forecast and climatolgy
Anomaly correlation – pattern correlation between forecast anomalies and

verifying analyses

1974 – improved
NESDIS VTPR
Retrievals
1978 – TOVS
retrievals



Cohn et al. 
(1997)

1997NASADAO

Daley& Barker 
(2001)

2000?US NavyNRL

Lorenc et al. 
(2000)

Mar. 1999U.K.Met Office

Gauthier et al. 
(1998)

June 19971993CanadaCMC

Courtier et al. 
(1997)

Jan. 19961987EuropeECMWF

Parrish& 
Derber (1991)

June 1991U.S.A.NCEP

Ref.Opera-
tional

StartedRegionCenter

Weather centers using 3D-var operationally



Summary
• Data assimilation combines information of observations 

and models and their errors to get a best estimate of 
atmospheric state (or other parameters)

• For Gaussian errors, 3D-var and OI are equivalent in 
theory, but different in practice

• 3D-var allows easy extension for nonlinearly related obs 
and model variables.  Also allows more flexibility in 
choice of analysis variables.

• 3D-var does not require data selection so analyses are 
in better balance.

• Improvement of 3D-var over OI is not statistically 
significant for same obs.  Systematic improvement of 
3DVAR over OI in stratosphere and S. Hemisphere.  
Scores continue to improve as more obs types are 
added.



Covariance Modelling

1.Innovations method
2.NMC-method
3.Ensemble method



K = BHT(HBHT + R)-1

For a single observation, at gridpoint i

K = Bi /( b + r
2) = c Bi

The role of the forecast error covariance 
matrix in analysis

The forecast error covariance matrix determines the
spatial influence of the observations.

(mxm)

xa = xb + K [z - H(xb)]
observation space (mx1)model space (nx1)



Background error covariance matrix

( )( )Ttbtbb xxxxP −−=

•If x is 107, Pb is 107 x 107.  
•With 105 obs, cannot estimate Pb.
•Need to model Pb.
•The fewer the parameters in the model, 
•the easier to estimate them, but
•less likely the model is to be valid



• Historically used for Optimal Interpolation 
• (e.g. Hollingsworth and Lonnberg 1986,
• Lonnberg and Hollingsworth 1986, Mitchell et al. 1990)
• Typical assumptions: 

•separability of horizontal and vertical correlations 

•Homogeneity 

•Isotropy

1.  Innovations method
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Instrument+
representativeness

Background error

Choose obs s.t. these terms =0

Assume homogeneous, isotropic
correlation model.  Choose a
continuous function ρ(r) which has
only a few parameters such as 
L, correlation length scale.  Plot all
innovations as a function of distance
only and fit the function to the data.

Dec. 15/87-Mar. 15/88
radiosonde data.  
Model: CMC T59L20

Mitchell et al. (1990)



Mitchell et al. (1990)Mitchell et al. (1990)

Obs and Forecast error variances



Vertical correlations
of forecast error

Height

Non-divergent wind

Lonnberg and Hollingsworth (1986)

Hollingsworth and Lonnberg (1986)







Multivariate correlations

Mitchell et al. (1990)



If covariances are homogeneous,
variances are independent of space

If correlations are homogeneous,
correlation lengths are independent
of location

Covariances are not 
homogeneous

Correlations are not 
homogeneous



Gustafsson (1981)

Daley (1991)

Correlations are not 
isotropic



Are correlations separable?
If so, correlation length should be
Independent of height.

Mitchell et al. (1990)Lonnberg and Hollingsworth (1986)



Covariance modelling assumptions:
1. No correlations between background and 

obs errors
2. No horizontal correlation of obs errors
3. Homogeneous, isotropic horizontal 

background error correlations
4. Separability of vertical and horizontal 

background error correlations

None of our assumptions are really correct.  Therefore 
Optimal Interpolation is not optimal so it is often called 
Statistical Interpolation.



2. NMC-method

• Need global statistics
• N. American radiosonde network is only 

4000 km in extent defining only up to 
wavenumber 10.  Vertical and horizontal 
resolution is too coarse.

• A posteriori justification: compare resulting 
statistics with those obtained using other 
methods



• Compares 24-h and 48-h forecasts valid at same time
• Provides global, multivariate corr. with full vertical and spectral 

resolution
• Not used for variances
• Assumes forecast differences approximate forecast error

4824 xx −

• 24-h start forecast avoids “spin-up” problems
• 24-h period is short enough to claim similarity with 0-6 h forecast 

error.  Final difference is scaled by an empirical factor
• 24-h period long enough that the forecasts are dissimilar despite 

lack of data to update the starting analysis
• 0-6 h forecast differences reflect assumptions made in OI 

background error covariances

Why 24 – 48 ?

-48 -24 0

?604824 xxxx −≈−

The NMC-method



Desroziers et al. 1995FranceMeteo-Fr.
Steinle et al. 1995AustraliaBMRC
Ingleby et al. 1996U.K.Met Office
Gauthier et al. 1999CanadaCDC
Rabier et al.1998EuropeECMWF
Parrish & Derber 1991U.S.A.NCEP
ReferenceRegionCenter

NMC-method usage



Properties of the NMC-method
Bouttier (1994)

• For linear H, no model error, 6-h forecast 
difference, can compare NMC P calc. to what 
Kalman Filter suggests.

• NMC-method breaks down if there is no data 
between launch of 2 forecasts.  With no data P 
is under-estimated

• For dense, good quality hor. uncorr. obs, P is 
over-estimated

• For obs at every gridpoint, where obs and bkgd
error variances are equal, the NMC-method P 
estimate is equivalent to that from the KF.



A posteriori justification: 
compare NMC results to innovation-method results

Horizontal correlation length scale

Rabier et al. (1998) Hollingsworth and Lonnberg (1986)

NMC
Innovations



Different horizontal correlation
lengths for different vertical levels

Different vertical correlation
lengths for different wavenumbers

Rabier et al. (1998) Rabier et al. (1998)



3. 





Buehner (2004, submitted)



Fifteen years ago, data assimilation was a minor and 
often neglected sub-discipline of numerical weather 
prediction.  The situation is very different today. Data 
assimilation is now felt to be important for all climate 
and environmental monitoring and estimating the 
ocean state.  There have been great advances in both 
modelling and instrumentation for a variety of 
atmospheric phenomena and variables, and data 
assimilation provides the bridge between them….

(Roger Daley, 1997)

Some final words…


