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Lecture #2
Planetary Wave Models

Charles McLandress (Banff Summer School 7-13 May 2005)
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Outline of Lecture

1. Observational motivation
2. Forced planetary waves in the

stratosphere
3. Traveling planetary waves in the

mesosphere (the 2-day wave)
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Part 1: Observational
Motivation
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Northern Hemisphere winter
⇒ strong longitudinal variation
(due to quasi-stationary
planetary Rossby waves)

Northern Hemisphere summer
⇒ weak longitudinal variation
(no quasi-stationary planetary
Rossby waves)

50 hPa Temperatures from NCEP/NCAR Reanalysis
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Breaking planetary waves (PV on 550K surface ≈ 20 km)
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Midwinter minimum of wave 1 in Southern Hemisphere

Randel (QJRMS 1988)

Hirota et al (QJRMS 1983)

geopotential height of
stationary wave 1 at 1 hPa
(48 km)

geopotential height of
stationary & transient
wave 1 at 10 hPa (32 km)
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Quasi two-day wave seen in satellite temperature data

Power at m = 3 & freq ≈ 1/(2 days)
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Part 2: Forced planetary
waves in the stratosphere
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Characteristics of planetary Rossby waves

• planetary waves are disturbances having zonal
wavelengths of the scale of the earth’s radius.

• PWs in extratropics are in approximate geostrophic
balance (referred to as planetary Rossby waves).

• forced in the troposphere by topography, land-sea
temperature contrasts, and synoptic eddies.

• restoring force is latitudinal gradient of background PV.
• horizontal propagation is westward with respect to the

background zonal wind.
• vertical propagation into the stratosphere occurs for the

longest spatial scales.
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PW Models to be discussed

1. Barotropic model on the β-plane
2. Linear quasi-geostrophic model on

the β-plane
3. Linear quasi-geostrophic model on

the sphere
4. Quasi-linear models
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1.  Barotropic PW model
on the β-plane

• incompressible fluid with purely horizontal flow.
• Newton’s laws results in two equations for the

zonal and meridional wind components.
• these two equations can be combined to form

the vorticity equation.
• further simplification is made by replacing the

spherical geometry with Cartesian geometry
and by writing the Coriolis parameter f = 2Ωsinφ
= fo+βy (the β-plane approximation).
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where q  is the barotropic vorticity.

For a small amplitude disturbance on
a constant zonal mean flow we get:

Rossby wave propagation mechanism

X

Y Initial position
of fluid blob

0

ζ = 0 ⇒
q = fo

Displaced position of blob
f = fo + βy decreases ∴ ζ > 0
since q = fo constant

Northward
motion of fluid to
right of blob

Southward
motion of fluid
to left of blob

Material
contour
moves to
left (west-
ward)

f  increases
∴ ζ < 0

⇒ Rossby wave propagates westward
with respect to the mean flow.
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2.  Linear quasi-geostrophic PW
model on the β-plane

• governing equations are:
– equations of motion for the horizontal winds
– hydrostatic equation
– thermodynamic equation
– mass continuity equation

• combined into a single equation called the quasi-
geostrophic potential vorticity equation.

• Cartesian geometry simplifies the problem.
• β-plane approximation is employed to retain the

latitudinal gradient of the planetary vorticity.
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Quasi-geostrophic-PV equation

linearize

• vertical propagation means m2 > 0

• for a stationary wave (c = 0) we get:

Requirements for vertical propagation:

1.  eastward background winds that are not too strong,

2.  long horizontal wavelengths.

Charney-Drazin criterion

where

Simple analytical solution for constant background zonal wind:
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3.  Linear quasi-geostrophic PW
model on the sphere

• quasi-geostrophic potential vorticity equation
on the sphere

• stationary waves
• examines impact of latitudinal and vertical

shear of background wind.
• PW structure computed numerically.
• Matsuno (JAS, 1970)
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Matsuno’s equations

linear qg PV equation

qg PV of waves

as before write:

• background zonal wind must be specified.

• PDE for complex-valued wave amplitude is then solved numerically.

Coriolis parameter now has full
latitudinal dependence
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Results from Matsuno’s model

zero-wind line is a critical line for
stationary PW  ⇒ in linear case with
dissipation PW is absorbed here.

Wavenumbers 1 and 2 are forced by
specifying their amp & phase at 5 km.

background wind m = 1 m = 2

EQ NP

60 km

0 km

z

ampphase
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Summary of Matsuno’s results:

• wave 1 structure in good
agreement with observations.

• region of weak latitudinal
gradients of background PV
inhibit wave propagation and
confines PW to polar region.

• internal reflections result in
amplitude maximum in middle
stratosphere.

• wave 2 amplitude too weak.
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4.  Quasi-linear PW models

• planetary Rossby waves break in the stratosphere and
interact strongly with the zonal mean flow.

• here we discuss several models which allow for this
interaction but use only a single zonal wavenumber.

• referred to as quasi-linear because the wave can
interact with the zonal mean flow but not with itself.

• validity of quasi-linear models was demonstrated by
Haynes & McIntyre (1987) in context of barotropic model.

• we will use these models to try to explain the mid-winter
minimum in PW 1 amplitude in the SH.
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Plumb (1989) Model

• quasi-linear quasi-geostrophic β-plane model

• zonal mean wind is relaxed toward a prescribed
``radiative equilibrium” value ur at a rate α.

PW equation

Zonal mean
equation

! 

} Substitute these forms in
for zonal mean and PW
and solve numerically
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Results from Plumb’s model

1) weak wave forcing: 2) strong wave forcing:

midwinter minimum midwinter maximum

• wave 1 is
forced at lower
boundary.

• wave forcing
is held fixed in
time.
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Summary of Plumb’s results

• mid-winter minimum in wave 1 occurs when forcing at
lower boundary is weak (like SH case):

– response is nearly linear; wave has little impact on zonal mean.
– zonal mean winds are close to the prescribed radiative

equilibrium values which are strongest in mid winter.
– the strong zonal mean winds in mid winter inhibit wave

propagation (Charney-Drazin criterion) ⇒ this results in early
and late winter wave amplitude maxima.

• mid-winter maximum in wave 1 occurs when forcing at
lower boundary is strong (like NH case):

– wave interacts strongly with zonal mean flow and prevents
westerlies from getting too strong.

– westerlies that are not too strong permit wave propagation ⇒
this results in a single wave amplitude maximum.
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Some weaknesses of Plumb’s model

• Latitudinal propagation of waves not considered.
• Impact of latitudinal shear in zonal mean wind (i.e.,

latitudinal gradients of zonal mean PV) not
considered.
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Mechanistic primitive equation PW model

• Scott and Haynes (JAS, 2002)
• primitive equations on the sphere
• stratosphere-only model
• single stationary PW is forced at the lower

boundary which is at 100 hPa.
• seasonal cycle is included by thermal relaxation

to a seasonally varying temperature field.
• importance of latitudinal propagation can be

examined which was not possible with the
Plumb model.
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Results from Scott & Haynes model

Early and late winter maxima
for weak to moderate forcing

Single mid-winter maximum
for strong forcing
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Normalized geopotential wave 1 amplitude at 33 km:

DayDay
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Results from Scott & Haynes model

linear
nonlinear

EW MW LW
   Days

EP
 fl

ux

h0=100m

h0=60m

h0=20m

• linear steady-state results are computed
using zonal mean winds for that day.

• maxima in linear solution correspond to
resonances.

• similarity of nonlinear and linear solutions
indicate that a resonance is what causes
the early and late winter amplitude
maxima.

• conditions of wave transmission are most
favourable to upward wave propagation in
early winter, not mid winter.

• these results demonstrate the importance of
latitudinal structure of the mean winds and
are to be contrasted Plumb’s where strong
winds produced the mid-winter maximum.

Normalized latitudinal average of Fz at lower boundary:
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Part 3: Traveling planetary
waves in the mesosphere

(the 2-day wave)
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Possible interpretations of the two-day
wave in the mesosphere

1.  neutral normal mode

2.  baroclinically
unstable wave

3.  combination of two

Wu et al (1993)
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Models described here to study 2-day wave

1. a linear 2D (latitude by height) primitive
equations model where wave frequency
and zonal wavenumber are specified

2. 3D middle atmosphere GCM
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Neutral Normal Modes

• normal modes of the atmosphere are free (unforced)
disturbances.

• neutral means that the frequency is real-valued (i.e., not
exponentially growing or decaying).

• analytical solutions are obtained by solving the linear
primitive equations on the sphere for a windless
background atmosphere without dissipation.

• for each zonal wavenumber there is a discrete set of
normal modes each with a different frequency and
meridional structure.

• if a disturbance is forced at this frequency the response
is resonant ⇒ it is the normal mode that grows most
rapidly in time and dominates the overall response.



31

      2.1       2.3
Period (days)

Calculation of neutral normal modes in the presence
of background winds and dissipation

Salby (JGR 1981)

Computed numerically using a 2D
primitive equations model:

• specify background zonal wind
and temperature, wave dissipa-
tion, and boundary conditions

• specify zonal wavenumber (m=3)

• force a wave at lower boundary

• vary frequency of forcing until a
resonant response is obtained ⇒
this is the neutral normal mode.
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z

Zonal mean wind
(specified)

Geopotential amplitude
(computed)

Salby’s (1981) Results

amplitude enhancement in
summer mesosphere

Equinox Solstice

z

z

90S 90Nφ

85 km

85 km
0 km

0 km
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Instability mechanism of
the two-day wave

• proposed by Plumb (1983)
• zonal mean easterlies near solstice may

be baroclinically unstable.
• simulations using middle atmosphere

GCMs reveal that 2-day wave
amplification is related to baroclinic and
barotropic instability of zonal mean state.
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Strong shear case

Weak shear case

Strong shear case

Weak shear case

2-day wave

2-day wave

Month

GCM results of Norton and Thuburn (1997)

φ

Z

Zonal mean winds

Strong
shear
zone
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• the relationship between neutral normal modes
and instability were examined by Salby and
Callaghan (JAS 2002).

• they used Salby’s (1981) 2D primitive
equations model but considered unstable zonal
mean background states and computed normal
modes for complex-valued frequencies.

⇒ positive imaginary frequencies indicate
exponential wave growth.

Normal Modes in an unstable mean flow
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Salby and Callaghan (2002) results

Region of instability
Im

ag
in

ar
y 

pa
rt

 o
f f

re
qu

en
cy

Real part of frequency

Fastest
growing
mode

2.0 days 2.1 days



37

Salby and Callaghan (2002) results

Structure of most unstable mode: EP flux and divergence of
most unstable mode:

EPFD > 0

• Region of wave instability acts as a source of energy for the normal mode
(.e, the 2-day wave grows by extracting energy from the zonal mean flow).
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Summary of 2-day wave results

• The two opposing interpretations of the 2-day
wave (neutral normal mode vs instability)
now appear to be reconciled. Hurrah.
– instability of the background state generates

unstable normal modes that grow in time.
– real part of the frequency and spatial structure of

the most unstable mode is in good agreement
with the observed 2-day wave.
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The End


