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Figure 1: Temperature for January simulated in a radiative-convect-
ive model (Fels, 1988) (top). Corresponding observed zonal mean
temperature from CIRA (Fleming et al., 1988) (bottom). The
warm winter pole and cold summer pole in the mesosphere in the

observations is a consequence of dynamical heating and cooling
from breaking GWs.
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Figure 2: Zonal wind computed from the radiative-equilibrium
temperature shown in Figure 1 using gradient-wind balance (top).
Observed zonal mean zonal winds for January from the Upper
Atmosphere Research Satellite Reference Atmosphere (bottom).
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Figure 3: Zonal mean temperature for July computed using a two-
dimensional model without GWD (top) and with GWD (bottom)
(Garcia and Boville, 1994). The winter polar stratosphere, where
radiative time scales are long, is considerably warmer in the sim-
ulation with GWD; this is a consequence of “downward control”.
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Figure 4: Zonal mean zonal winds for July computed using the
SKYHI GCM for three different horizontal resolutions (Hamilton,
1996). The observed winds from CIRA are shown at top left.
The weakening of the winter jet as the resolution is increased is
attributed to the small-scale GWs.
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Figure 5: Observed equatorial monthly mean zonal winds de-
rived from data from radiosonde stations at Canton Island, Gan-
Maledive Islands and Singapore (Naujokat, 1986). Contour inter-
val is 10 m/s; westerlies are blue.



Figure 6: One-dimensional model simulation of the QBO: using
equatorial planetary wave forcing and a prescribed upwelling (i.e.,
mean vertical wind) that increases slowly with time (top); same
but with the addition of GW momentum flux using the Hines
parameterization and constant upwelling (bottom). The addi-
tional flux provided by the GWs is required to offset the period-
lengthening effect of the upwelling.
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Figure 7: Observed equatorial zonal wind at Singapore (top). Sim-
ulations using the MAECHAMS GCM with parameterized GW
drag: 90 vertical levels (middle) and 39 levels (bottom). The
simulated QBO in the middle panel is attributed to the better
resolution of resolved waves in the stratosphere. From Giorgetta
et al. (2002).
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Figure 8: Satellite image of vertically trapped mountain waves (lee
waves). The red line denotes the wind direction. (Image courtesy
of Sam Shen, University of Alberta).
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Figure 9: Vertical flux of horizontal momentum as a function of
zonal wavenumber at ~ 70 km from the SKYHI GCM using a

1° x 1.2° resolution (solid) and 2° x 2.4° resolution (dashed). The

shallow slope at high wavenumber means that much higher hori-
zontal resolution is required to capture most of the wave momen-

tum flux. From Hamilton (1996).
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Figure 10: Zonal mean zonal wind from the CMAM for the seasons
JJA and DJF: with orographic GWD (top) and without (bottom).
Contour interval is 10 m/s. Easterlies are dashed.
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Figure 11: Zonal mean zonal wind for JJA and DJF: CIRA obser-
vations (top) and the CMAM simulation with orographic GWD
(bottom). Contour interval is 10 m/s. Easterlies are dashed.
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Figure 12: Zonal mean zonal wind from the CMAM for JJA: us-
ing Warner-McIntyre GWD (top left), modified Warner-McIntyre
GWD (top right), Hines GWD (bottom left), and with only crit-
ical levels, i.e., no saturation, (bottom right). Contour interval is
10 m/s. Easterlies are dashed.
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Figure 13: Zonal mean zonal wind from the CMAM for JJA: GW
source at 100 hPa (top) and at the ground (bottom). Hines GWD
is used. Contour interval is 10 m/s. Easterlies are dashed.
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Figure 14: Eastward and westward components of the zonal mean
GW momentum flux from the CMAM for JJA: 53°S (top) and

53°N (bottom). Using Hines GWD with GW source at 100 hPa
and the ground.
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Figure 15: Meridional wind component at 12 hours local solar

time at the latitude 20°S from the extended version of the CMAM:
instantaneous value (top) and monthly mean (bottom). The band-

ed structure seen in the monthly mean is the migrating diurnal tide
(i.e., a planetary-scale gravity wave). The short horizontal scale
disturbances seen in the snapshot are (resolved) gravity waves;
note how they increase in amplitude up to ~ 110 km, after which
they are rapidly dissipated by molecular diffusion.



010

— n
L3 L] ol
O (] =

Prassure [mh)

g

:

10 Illllqtﬂ I Ilnh]ﬂ I Illlqaﬂ | Ilnihﬂﬂ
Rotatlonal KE (m®s™2)

010

Pressura (mb)
A e F

2

L s gl I i d Lo g i a3 kg saal i i I IIII;
1.0 14 100 1000
Divergent KE {m's™*)

g
8
[ J

Figure 16: Rotational (top) and divergent (bottom) components
of the kinetic energy per unit mass for 4 different GCMs. The
profiles are obtained by averaging the spectra over the total hor-
izontal waveumber from 15 < n < 30. The CMAM is the thin

solid line. From Koshyk et al. (1999).
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Figure 17: Kinetic energy per unit mass (vertical axis) vs total
horizontal wavenumber (horizontal axis) in the stratosphere and
mesosphere for different GCMs. Note how the mesospheric spectra
are much shallower than the stratospheric spectra. This is an in-
dication of (resolved) vertically propagating gravity waves. From
Koshyk et al. (1999).
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Figure 18: Zonal wavenumber-frequency spectra of precipitation
rate (left panels) and vertical component of the Eliassen-Palm flux
at 70 hPa for 3 different GCMs. The spectra have been averaged
between 10°S to 10°N for DJF. The differences in the (resolved)
EP flux are attributed to differences in the convective heating pa-
rameterizations (which generates the precipitation) used in the
models. From Horinouchi et al. (2003).



Figure 19: Gravity waves in the “green-line” airglow layer (~ 95
km) photographed using an all-sky imager during the Aloha’93
campaign in Hawaii (top) (Photo credit Mike Taylor). Gravity
waves in mesospheric noctilucent clouds (bottom) (Photo credit
unknown).
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Figure 20: Temperature measured by a Rayleigh lidar at York
University, Toronto, (top left) and the corresponding fractional
perturbation, which is derived by removing the background pro-
file, (top right). The perturbation is interpreted as a vertically
propagating gravity wave with a vertical wavelength of ~ 8 km
and an amplitude which increases with height. Sequence of frac-
tional temperature perturbations at 30 minute intervals (bottom).
The downward propagation of the phase indicated upward energy
propagation of the GW. From Whiteway and Carswell (1995).
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Figure 21: Horizontal wind power spectra versus frequency at ~
75 km at Saskatoon, Saskatchewan: MF radar results are denoted
by the thick solid line. Results from three different simulations
of the CMAM are given by the thin lines. For periods less than
~ 3 hours the power in the CMAM spectra drop off much more
rapidly than the observations. This behaviour results from the
temporal smoothing of high frequency gravity-wave oscillations in
the CMAM. From Manson et al. (2002).
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Figure 22: Horizontal winds measured during super-pressure bal-
loon flights at ~ 20 km in the tropics (left) and high latitudes
(right) in black. The high frequency oscillations seen in the 2 top
right panels are inertia gravity waves. The blue curves are ana-
lyzed winds. Figure courtesy of Albert Hertzog.
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Figure 23: Temperature variances derived from Microwave Limb
Sounder (MLS) radiances for June, July and August at 38 km.
Top two panels: variances from limb-tracking and limb-scanning
modes as a function of latitude and longitude. Bottom two panels:
the strong correspondence between the variances and outgoing LW
radiation (low OLR means high clouds) is strongly suggestive of
convective forcing of GWs. From McLandress et al. (2000).



