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Cloud Formation in a Clean and Polluted
Atmosphere
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cloud droplets, hence, cloud droplets, hence,
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Data from Canadian Field Experiments
[Peng etal.. 2002]
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Data from Canadian Field Experiments

[Peng etal.. 2002]
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Satellite-retrieved median effective radius of
particles near the top of deep convective clouds
at various stages of their vertical development
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Effect of Aerosols on Deep Convective Clouds
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Figure 3. Vertical profiles of maximum values of (a) cloud water content (CWC), (b) the mean
volume diameter and (c) droplet concentration observed in the control run at 250 m below the
growing cloud top, presented on the background of the aircraft observations (Rosenfeld and
Woodley, 2000), shown in green (CWC>0.2 gm™ and black (CWC<0.2 gm™). The blue and red
squares denote model calculated values for the low and high CCN concentrations. The black square
in the concentration panel (¢) denotes the model ice concentrations.
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How Important is the Semi-Direct Aerosol
Effect Globally? [Lohmann and Feichter, 2001]

Pre-industrial (PI) simulations: No fossil fuel use and

no
Ina

biomass burning

irect aerosol effect: Difference 1in shortwave

rag

1ation at the top of the atmosphere between

present-day (PD) and PI simulations

Conduct 3 pairs of 5 year T30 simulations:
INDIRECT: Cloud albedo and cloud lifetime effect
DIRECT: Direct and semi-direct aerosol effect
COMBINED: All aerosol effects on water clouds




Global Mean Aerosol Emissions
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Correlation of
the change in
black carbon
burden with
LWP for the
experiments
DIRECT,

INDIRECT and
COMBINED

[Lohmann and Feichter,
2001]
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Annual global mean anthropogenic
aerosol effects on water clouds

COMBINED INDIRECT DIRECT

AAB (Tg) 2.6 2.6 2.5
ALWP (g/m2) 9.5 10.1 -0.2
ATCC (%) 0.0 0.3 -0.2
AFswtoa (W/m?) -1.3 -1.4 -0.1
AFswsfc (W/m?2) -2.0 -1.8 -1.2

Conclusions: Semi-direct effect
Black carbon can reduce the liquid water path considerably
locally due to absorption of solar radiation, heating of the air
and evaporation of cloud droplets
However, the semi-direct effect is negligible as compared to
the indirect aerosol effects on a global scale



Summary of Aerosol Forcing Estimates
[Anderson et al.. 2003]

Forward Inverse
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Example for Inverse Simulations

Knutti et al., 2002
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Indirect aerosol effect: Slope of the cloud droplet
radius as a function of the aerosol index

Lohmann and Lesins [2002]
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Change Iin net radiation at top
of atmosphere (W m-) due to
anthropogenic aerosol effects
between pre-industrial and
present-day times

Original Modified”
Ocean -1.28 -0.98

Land -1.62 -0.53

Global -1.40 -0.85

*: after taking the difference in indirect
aerosol effect from POLDER satellite
data and ECHAM into account.

Lohmann and Lesins, Science [2002]
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One explanation for discrepancy between ECHAM4
and POLDER: need to consider spectral dispersion f3
of cloud droplet size distribution

B=(1+2¢£2)2/3
/(1+€2)V/3

e=std.dev/

mean
radius
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[Liu and Daum, 2002]



Global impact of

the dispersion
effect:
The anthropogenic
indirect aerosol
effect is reduced

from —1.4 W/m?2to
—1.2 W/m?

[Peng and Lohmann, 2003]
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Aerosol indirect effect in the North Atlantic
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General differences between continental
and maritime clouds [Lohmann and Lesins, 2003]
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Conclusions to this Point:

« The anthropogenic indirect aerosol effect on
the net radiation at the top of the atmosphere
is reduced from —1.4 W m=2to —0.85 W m=by
combining ECHAM4 climate model and
POLDER satellite data.

o This reduced estimate now agrees with past
observations combined with a simple climate
model of 0 to —1.2 W m [Knutti et al. 2002].

Dispersion effect explains 1/3 of this
discrepancy.
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Adiabatic parcel model [Linetal. 2002] |
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ARSI | Omogeneous Freezing of
o oz Supercooled Aerosols

[Karcher and Lohmann, 2002b]
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Homogeneous Freezing of Supercooled Aerosols
[Karcher and Lohmann, 2002a,b]

« Use an adiabatic parcel model to derive a parameterization of
homogeneous freezing

« Obtain number of ice crystals n; at critical supersaturation S_,:

n; = mW/pi [b2/(2ﬂ: bl)]3/2 4 Scr/(az + a3 Scr) w T1/2

w = updraft velocity,
t = freezing time scale,
a,,b, = coefficients

« Note: No explicit dependence of nucleation rate on aerosol
particle concentration n,, but n, serves as upper bound




Cloud Droplet vs. Ice Crystal Nucleation

~ 0.8 10 -1/10 . "
ng ~ n,%8 wsd/10 n_ -1/10 (typical for marine aerosols)

n;, ~ n,°wd/2n_. /2 =» weak aerosol effect for cirrus (valid for
fast growth regime)

n, ~ r ' (slow growth regime)

where: n, = aerosol particle concentration, n., = water
vapor saturation pressure over ice (number density), ry =
aerosol or ice particle radius at time t,




Which Aerosols Act as Ice Nuclel?

Liquid ammonium sulfate particles with solid kaolinite inclusions:
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Which Aerosols Act as Ice Nuclel?

Soot covered by
sulturic acid:

Temperature (°C)

Figure 4. Summary of conditions for ice formation by 1% of
soot particles subjected to different treatments. Linear regres-
sion fits to the data from experiments with untreated soot (0)
and soot treated with an approximate monolayer of H,SO, (x)
are indicated, respectively, by the short-dashed (* = 0.95) and
long-dashed (r* = 0.73) lines. Experiments with multi-layer
H,SO, coverage are indicated by the filled square symbols.
Experimental conditions for ice formation on small (<20 nm)
pure sulfuric acid particles are given by triangle symbols.

[DeMott et al., 1999]




Heterogeneous Freezing of Supercooled Aerosols
Water activity a, ~ relative humidit

hom

0.68 0.74 0.80 0.86 0.92 0.98
d
w

Figure 2. Nucleation rates per particle per second versus water activity at 220 K. Homogeneous
(right curve) and heterogeneous (left curve) are shifted by the amount 8a,, ~ 0.2 resulting
from Slgft = 1.2. The same particle that freezes homogeneously at a,, ~ 0.93 would freeze

heterogeneously at a,, ~ 0.73 under these conditions.
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Figure 3. Freezing threshold saturation ratios over ice versus temperature for homogeneous

freezing (upper left solid curve) from (5) and for a constant value of 1.3 (dashed line). The
upper right solid curve shows the ice saturation ratios where liquid water would be saturated.
Homogeneous freezing at temperatures to the right of the open circle oceurs at water saturation.
Also shown are experimental data for black carbon (BC) particles from DeMott et al. [1999]
(filled/open triangles for multilayer/monolayer coverage with H,SO,) and for ammonium sul-
fate particles with mineral dust immersions from Zuben et al. [2002] (diamonds). The latter

authors have fitted their data to a shifted water activity.




Ice Crystal Concentration for Heterogeneous Versus

Homogeneous Freezing of Supercooled Aerosols
[Karcher and Lohmann, 2003]
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Figure 9. Number density of ice particles versus vertical velocity from APSC simulations

starting at 225 K and ice saturation. In the model, 400 cm™> homogeneous nuclei are present

with 0.01 em—? (solid curve) and without (dashed curve) heterogeneous IN with St¢t = 1.3.
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Conclusions to this Point:

If only one type of less potent ice nuclei (IN) with
freezing saturation ratios above 1.3-1.4 triggers

cirrus formation, cloud properties are not very
susceptible to changes of IN properties, as in the case
of homogeneous freezing.

However, a much stronger indirect aerosol effect on
cirrus clouds is possible if several IN types with
distinct freezing thresholds compete during the
freezing process, most likely leading to a suppression
of the ice crystal concentration.




Alr Traffic may Increase Cirrus Cloudiness
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Contralls Reduce Diurnal Temperature Range
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Global Simulation of Aircraft Soot Emissions

with ECHAMA4 [Hendricks et al. 2003]
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Global simulation
of ailrcraft soot
emissions with

ECHAM
[Hendricks et al. 2003]
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Global Simulation of Aircraft Soot Emissions

with ECHAMA4 [Hendricks et al. 2003]

annual mean Nice, 350—250hPa, hom annual mean Nice, 350—-250hPa
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Homogeneous nucleation: Heterogeneous nucleation:
Lohmann and Karcher [2002] dNice/dt = { f(INhet), INhet > INcrit

dNice/dt hom, INhet < INcrit

INhet = NBC + Ndust
INcrit = 0.5/cm3



Global Simulation of Aircraft Soot Emissions

with ECHAM4 [Hendricks et al. 2003]

IN chonge due to aircraft, 350-250hPa IN change due to aircraft, 350—-250hPa
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Experiment 1: Experiment 3:
IN,.. = Ny, + Npc (surface) IN;.. = Ny

Experiment 2: . Experiment 4:
N}, = INp, (Exp 1) + Ny (aircratt) IN, .. = IN, .. (Exp 3) + Ny (aircraft)



Conclusions to this Point:

e Aircraft soot emissions may contribute significantly
to heterogeneous ice nuclei on the Northern
Hemisphere




Conclusions:

Aerosols affect liquid clouds by decreasing cloud droplet

size

-> inhibition of drizzle formation

-> more retflection of solar radiation

-> evaporation of cloud droplets in case of soot
Aerosols may affect ice clouds by

-> freezing seems to occur at colder temperatures

-> inhibition of riming

-> more contrails




