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Observations and Models

Observations
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Criteria for model success [Steyn and Galmarini, 2005]

Choice of model should be guided by quality of observations and
desired level of accuracy and precision of understanding or
prediction of atmospheric phenomenon




One-dimensional Modelling

® Due to computational limitations, 1-D models were used extensively for
assessments throughout the 1970s and 1980s

40 ; :
Obs: 32°N

Filled circles:
32°S

Triangles: 9°N
Squares: 32°N
Circles: 41°N

altitude/km

g
4
~

0
2

.
=
=
5]

20

05 10 15
108 x CH, mixing ratio (by vol.)

I N : i
107 :
[Logan et al., 1978]

N,O mixing ratio (by vol.)

® Despite their limitations, 1-D models adquately provided much of our early
understanding of the trace constituents in the atmosphere - reflects limited

spatio-temporal distribution of data in the pre-satellite era




One-Dimensional Framework

1-D models provide a latitude-longitude averaged
(global or hemispheric) representation of the
atmosphere

Continuity equation

M) _p_p - i(K(z)M(z) af(Z))
ot 07 0z

M(z) = atmospheric number density
n(z) = tracer number density
f(z) = tracer mixing ratio

K(z)= vertical

Radiation

I(z) =1, exp(—i f O’I’l(Z)dZ)




Vertical Diffusion Coefficients

Use .O!JSGI'VEd [-)I'Ofll-eS O'l." trace ga.s?s to Estimated Diffusion Coeff. Profiles
empirically derive diffusion coefficient — =g =

T T

vertical flux = -K(z2)M(2)df (z)/dz

In steady state
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[Massie and Hunten, 1981]
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Stratospheric Ozone Trends

Umkehr measurements
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DECADAL OZONE CHANGE
(1870-1980)

® The 1-D model suggested a slight
increase in O3 in the lower
stratosphere due to CFC increases

1 __— 1-D model

® Discrepancy reflects the inability of the
1-D model the account for the effects
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[Lacis et al, 1990]
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Comparison of NO, in 1-D Models

[WMO, 1985]
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Comparison of O, Photolysis in 1-D Models
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OXYGEN PHOTOLYSIS RATE RELATIVE TO AVERAGE

Photolysis of N,O occurs in the region 173-240 nm = sensitive to
Schumann-Runge bands (and Herzberg continuum) of O,




Comparison of N,O Photolysis in 1-D Models
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NITROUS OXIDE PHOTOLYSIS RATE RELATIVE TO AVERAGE

N,O+hv=N,+0 (90% of loss)

N,O + O('D) = NO + NO (source of NO,)

[WMO, 1985]




Comparison of NO, budget in 1-D and 2-D Models

2-D Model 1-D Model
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[WMO, 1985]
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UNITS: 10%* MOLECULES s

® In 2-D framework, meridional transport from source region in tropics important

® in 1-D model, balance is between in situ production (P) and vertical diffusive
transport




Comparison of NO, in 2-D Models

* In 1985 there were large differences in NO,

also in the 2-D models

* At present, the discrepancies in NO, between
models (2-D and 3-D) is not much better
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[WMO, 1985]
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Tropospheric chemistry

Methane Oxidation

CH,

HOXx Cycle

OH
4

H,

HNO, H,0,

l Heterogeneous l Heterogeneous

[M. B. McElroy, 2002]




Sensitivity of tropospheric OH to changes in emissions of NO and CO

Continental

Sno = 8x10° cm2s™? [NO,]=0.2 ppb
Sco = 2.0x10" [CO] = 130 ppb
Scs = 6.5x101° [CH,] = 1.7 ppm

Sno = 7x101% cm2s [NO,]=1.4 ppb
Sco = 8.0x10" [CO] = 380 ppb
Schq = 7.8x10"0 [CH,] = 1.7 ppm

Low Latitude

Sno = 6.7x108 cm2s™ [NO,]=0.024 ppb
Sco = 1.2x10" [CO] = 89 ppb
Scha = 1.0x10" [CH,] = 1.7 ppm

[Thompson et al., 1989]




CO

chemistry nonlinear
[Thompson et al., 1989]
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Instability in the CH,-NO, -O,-HO, Chemical System
(in a Box Model)
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Log NO Flux Log CH4 Flux

Abrupt transition between states characterized by low and high
abundances of NO,




Multiple Steady States

OH NO
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Existence of MSS sensitive to

abundance of other tracers e.g. no
MSS if RH < 40%
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1-D Simulation of Stewart’s Results

NO, flux=3x10" cm™ s~ CO flux=1.33x10" cm™ s~
T T T T T T T

\III‘ T T 1771

14 * Decreasing CH, emissions results in
“ a transition to a high NO, regime

10

* Total O; column decreases by a
factor of 3 from the low to high NO,
regime (NO, in lower strat = 0.5 ppm)
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* Results suggest the possibility of
MSS in the 1-D model

« These abrupt transitions were not
found in the 2-D model

« A more detailed search of state

L space is needed for the 1-D and

‘0‘1' 1 1012
CH, Flux (cm2 s1) 2-D models
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HO, Production and

wlll[

HOXx production
(O('D) + H20)

HOx loss
(OH + NO2 + M)

2(0'D+H,0)

Kasel OH][NO,][M]

L]

10"
CH, Flux (cm™ s™)

HO, Production and Loss

At low levels of CH,, OH
production is insufficient to
support HNO, formation
=NO, concentrations increase

dramatically




Influence of Transport on Stratospheric O,

O, from Harvard 2-D model Net Column O, P-L for equinox)
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Latitude

® Net O, production in tropical stratosphere reflects large flux of UV
photons

¢ At high levels of CH4, oxidation shifts to tropical stratosphere which
helps stabilize the system




A More Dynamically Consistent Approach

Approximate the transport with a vertical
“eddy transport” coefficient

K = sz

ALTITUDE (km)

- 5t + 1)

W, =RQ,/(N’H)

‘!O
CHEMICAL LIFETIME (days)

« W, = vertical mass circulation

* 0, is annual mean diabatic heating rate
projected on P,(u)

* 1. = timescale for the chemistry
* 14 = timescale for horizontal eddy mixing
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Vertical transport coefficient species-specific

3
"K" (m? 57 [Holton, 1986]




Sensitivity of Tracer Profile to K,
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*Filled circles: Observations at 44°N
‘Dashed-dotted line: global mean with K, for inert tracer
Solid line: global mean for species specific K,
*Dashed line: simulated profiles for 45°N




Main Points of Lecture

® 1-D chemical-radiative-diffusive models were used extensively in
1970s and 1980s

® Modelling the vertical advective transport as a diffusive process
provides a fundamentally flawed simulation of the distribution of the
trace gases =one K does not fit all

® More dynamically consistent approaches (e.g. Holton [1985]) were
proposed but never adopted widely

® Despite these limitations, 1-D models provided much of our
understanding of the trace constituents in the atmosphere during the
pre-satellite era

® 1-D chemical-radiative models are currently used in 3-D model
- e.g., domain decomposition for parallel numerical simulations

® The limitations of 1-D models reflects importance of the meridional
transport of tracers in the atmosphere = Brewer-Dobson circulation




