Stratospheric Ozone

GCC Summer School, 2004
Banff, Alberta

Dylan Jones
Department of Physics
University of Toronto




Stratospheric Ozone
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Defining characteristic of the stratosphere: temperature increases with altitude
= radiative heating




O, and O; Absorption Cross Section
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Spectrum of Solar Radiation vs. Altitude
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Fig. 10-2 Solar actinic flux at different altitudes, for typical atmospheric
conditions and a 30° solar zenith angle. From DeMore, W. B., et al.
Chemical Kinetics and Photochemical Data for Use in Stratospheric Model-
ing. JPL Publication 97-4. Pasadena, Calif.: Jet Propulsion Lab, 1997.




Stratospheric O,

Chapman mechanism:

Production:

e

0,+hv>0+0" (A < 242 nm)

0+0,+M—0,+M

0,+hv—0,+0(D) (A <325nm)
oO(D)+M—->0+M
0,+hv—>0,+0

0;+0 - 20,




Odd-oxygen (O, ) Family
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Slow [From M. B. McElroy, 2002]
‘ Loss

o, =2J10;]

Lo, =2k[05][O]

Loss is quadratic with
respect to O,



0,+hv>0+0
0+0,+M— 0,+M
O,+hv—>0,+0
0, +0 — 20,

Loss of O; by reaction (3):
0O,

In steady state:
k, [O,]IM][O] = J;[O4]

[O] J, To
= = <1
[0;] K, [O,][M] 7,

3

O, Lifetime

Loss of O by reaction (2):

401 10, 1M01
dt

-1

O]
= = (k, [0,][M
o = 1 o, ii0] e [O:1M))

1 month

[0,] = [O] + [O5] = [O4]




Chapman Chemistry vs. Observations

Box model calculation at 30°N for equinox
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Catalytic Cycles For Ozone Loss: General Idea

X is a catalyst

The catalyst is neither created nor destroyed...but
the rate for the catalytic cycle [odd-0 removal in
this casef depends on catalyst concentrations




Hydrogen Oxide (HO,) Radicals

Source from troposphere and
— the oxidation of CH,

Initiation:
k
H,0 + O('D) > 20H

Propagation through cycling of HO, radical family (example):
OH +0;—> HO,+ 0O, OH +0;—> HO, + 0,
HO,+ O;—> OH + 20, HO,+ 00— OH+ 0,

Net: 20; —> 30, Net: O + O;—> 20,

Termination (example):
OH + HO,—» H,0 + O,

HO, is a catalyst for O; loss




Nitrogen Oxide (NO,) Radicals (NO, = NO + NO,)

e Initiation  N,O + O('D) - 2NO

 Propagation (example) rate limiting step
NO +0, —NO,+0, NO + 0,— NO, + 0, /
NO,+hv—>NO+O NO,+ 0 —- NO + 0,
0+0,+M—->0;+M 0, loss rate:
Null cycle Net O; + O = 20, d[O,]

~22 =2k [NO,][O]

e Termination Recycling
NO,+OH+M — HNO; +M HNO;+ hv - NO, + OH
NO, + O; - NO;+ O, HNO; + OH —- NO;+ H,0
NO;+NO,+M —> N,0. +M NO;+hv—>NO,+ 0
N,O; + H,0 - 2HNO, N,O; + hv - NO, + NO;,




Catalytic Cycles For Ozone Loss:
Chlorine (Cl1O, = C1 + C10O) radicals

* Initiation :
(example) CF,Cl, + hv —» CF,Cl + Cl

* Propagation (example):
Cl1+0,;- ClIO+ 0, Cl1+0;-> ClIO+0,

ClO +0 - Cl1+0, OH + O, - HO, + O,
Net: O, + O - 20, CIO + HO, > HOCI + 0,

HOCl+ hv - Cl1+ OH
Net: O; + O; — 30,
reservoir species

 Termination: \ Recycling:
Cl+ CH, - HCI + CH, HCI+OH - Cl+H,0
ClO +NO, +M - CIONO, +M CIONO, + hv - CIO + NO,

/

couples CIO, and NO, cycles




ATMOSPHERIC CYCLING OF NO, AND NO,

——— NO,,

fast inner cycle
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[Adapted from Jacob, 1999, and McElroy, 2002]




Atmospheric Cycling Of C10, AND Cl,

No.2

CIO

X7
H,, CHy, HO,, CHz fast inner cycle
//
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[Adapted from Jacob, 1999, and McElroy, 2002]




Catalytic Cycles For Ozone Loss:
Bromine (BrO, = Br + BrO) radicals

 Initiation:
(example) CH;Br + hv » Br + CH,

 Propagation:
Br + O;—»> BrO + O, Br + O;—»> BrO + O,

BrO+0O - Br+0, Cl1+0;- ClI0O+ 0,
Net: O; + O > 20, ClO + BrO - Br +Cl1 + O,

Net: O; + O; - 30,

 Termination: Recycling:
Br + HO, » HBr + O, HBr + OH —» Br + H,0
BrO +NO,+M —» BrONO, +M BrONO, + hv - BrO + NO,




Atmospheric Cycling Of BrO, And Br,

n
>

OH— hv, O, ClO, NO

HO

Industry

[Adapted from Jacob, 1999, and McElroy, 2002]




Influence of Catalytic
Cycles in Column O,

Latitude

Observed O; column
from TOMS (1988-1996)
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Vertical Distribution of O,

Harvard 2-D model with
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Hydrolysis of N,O; in Aerosols Increases the
Sensitivity to Cl in the Lower Stratosphere

N,O; + H,0,, — 2 HNO,

Box model Calculations

[ £
P wi
o o
= 2

-
2 <

_ . 1.0"
_FRACTION OF TOTAL LOSS FRACTION OF TOTAL LOSS
Without N,O; hydrolysis With N,O; hydrolysis

N,O; hydrolysis decreases NO,and increases CIO, and BrO,

[From McElroy et al., 1992]




Sensitivity of Halogen Loss to NO,

: Halogens
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[From Wennberg et al. 1994]




Ozone Column Trend, 60°S-60°N [WMO, 1998]

Stabilization
of chlorine?

Chlorine?

Slope to 5/91: -1.97 %/decade
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Ozone Trend at Halley Bay, Antarctica
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The Antarctic Ozone Hole

Southern hemisphere ozone column seen from TOMS, October

1 Dobson Unit (DU) = 0.01 mm O, STP = 2.69x10'® molecules cm-2




Polar Ozone loss: Heterogeneous Chemistry

* N,O(g) + HCI(s) - CINO,(g) + HNO,(s)

* N;O5(g) + H,0(5) > 2 HNO,(s) Converts chlorine and
® CIONO,(g) + H,0(s) = HOCI(g) + HNO;(s) bromine from stable forms

* CIONO,(g) + HCI(s) — Cl,(g) + HNO;(s) gﬁ?ﬁf Z)tI;)I f;’ei?ei that are
2

* HOCI(g) + HCI(s) — Cl,(g) + H,0(s) rapidly photolyzed to yield
* BrONO,(g) + H,0(s) - HOBr(g) + HNO,(s) reactive Cl and Br atoms

®* HOBr(g) + HCI(s) = BrCl(g) + H,0(s)

Reactions occur on surface of Polar Stratospheric clouds (PSC)

Type1l PSC:

* composed of nitric acid trihydrate and a ternary solution of HNO,;, H,SO,, H,O
* Formation temperature: 195K
* Particle size <10 pm

Sedimentation of PSC particles
Type 2 PSC: removes NO, from polar

» Water ice particles stratosphere (denitrification)
* Formation temperature: 188K
* Particle size > 10 pm




PSC Formation vs. Temperature

July 28, 1994 MASP Aerosol particle volume
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Activation of Chlorine in The Antarctic Vortex
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[From Kawa et al. 1997]




Catalytic Cycles of Polar O, Loss

Chlorine

2[C1+ O;— CIO + O,]
ClO+ClIO+M — ClI0O0OClI+M
Cl100Cl1 + hv - C1 + C100

ClI0OO+M - C1+0,+M O, loss proportional to the square
Net: O; + O, = 30, of the CIO concentration

O, loss rate:
_d[0;]

2= 2k [CIOF[M]

Bromine

Br+0O; - BrO + 0, Br + O; — BrO + O,
Cl1+0;— ClO + 0O, C1+0;,— ClO + 0O,
ClO + BrO — BrCl + O, Cl0 + BrO — C100 + Br
BrCl +hv — Cl + Br ClIOO+M - Cl1+0,+M
Net: O; + O; — 30, Net: O; + O; — 30,

Denitrification removes NO, (and thus NO,), delaying the conversion
of Cl and Br to CIONO, and BrONO,




Chronology of Antarctic Ozone Hole
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Vertical Structure of The Ozone Hole

SOUTH POLE STATION
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Influence of Transport on Stratospheric O,

Column O; P and L from Harvard 2-D model (for equinox)
P | ) B — W7

Production

ool o1
—90° —60° -30° 0>  30°

Latitude

® Net O, production in tropics
® Net O, loss in mid- and high-latitudes

= Net transport of O, from
tropics to high-latitudes

[From M. B. McElroy, 2002]




Altitude (km)

Brewer-Dobson Circulatio

°B-D circulation transports O, from
tropics to mid-high latitudes

®Rising tropospheric air with low
ozone = O; columns are smallest
in tropics despite this being the
main stratospheric O, production

region

L atitude

°0; maxima occur toward high latitudes
in late winter/early spring - the result of
the descending branch of the B-D

circulation
®Virtually no seasonal change in the

tropics

e TOMS O, column (1988-1996)

| [ M N \%\1
M o]

Latitude




Ozone Column Trend, 60°S-60°N [WMO, 1998]

of chlorine?
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Or dynamics?
Siope to 5/91: -1.97 %/decade
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35°N, September 0Odd Oxygen
N.H., Mid—Latitudes 1996 Cﬁy, Br,, Aerosols: No lodine Photochemical

to 1996 (Annual Average) JPL 1997 Kinetics Lifetime
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Ozone “forcing” and lifetime found using a photochemical model constrained by balloon-borne
observations of O3, Cly, NOy, H20, CH4, etc (e.g., Osterman et al., GRL, 24, 1107, 1997)

[courtesy of R. J. Salawitch]



35°N, September
N.H., Mid—Latitudes 1996 Cﬂy, Br,, Aerosols: No lodine

to 1996 (Annual Average) JF JPL 1997 Kinetics Upper Stratospheric
T T T Ozone: Newchurch et

\ al., JGR, 108, 4507,
2003:

* Calculated change in
trend between 35-45 km
from 1997 — 2003

* Consistent with slowdown
of Cl loading

» “First stage of ozone
recovery”
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[courtesy of R. J. Salawitch]




N.H., Mid—Latitudes
1980 to 1996 (Annual Average) Effect on Column 05
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Solomon et al. (1998)
Northern Hemisphere, Mid—Latitudes « NCAR/NOAA (NOCAR) 2-D model
1980 to 1996 (Annual Average) = climatological transport
 Enhancement in ClO due to longitudinal variations
in temperature (wavenumbers 1,2,3)
« JPL 1997 Kkinetics, sulfate aerosol loading based on
satellite obs.

Jackman et al. (1996)

* GSFC 2-D model = climatological transport
« JPL 1997 Kkinetics, sulfate aerosol loading
based on satellite obs.

Chipperfield, APC, 3, 1253, 2003
* SLIMCAT: 3-D CTM
* Transport based on ECMWF winds for 1979 to 1992
@i’”fSEIMC AT « JPL 2000 chemistry
' * Sulfate aerosol loading based on observations
* Difference in O, found by comparing two long-term
simulations of ozone:
— one with fixed halogen loading and
— other with variable halogen loading
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Most models can not fully account for observed
trend in lower stratosphere based solely on rising
levels of halogens

TREND (%/decade)




35°N, September
1996 Cﬁy, Br,, Aerosols: No lodine

Halogen Contribution to Ozone Loss
30 2 .

Major Kinetics Changes Affecting

Ozone Loss by Halogens
(since JPL 1997 Evaluation)

OH+NO,+M | JPLOO Halogen Loss |
OH+HNO, 1

NO,+O 1 JPLOO Halogen Loss |

CIO+OH - JPLOO Halogen Loss {
JPL 2000 HCI (~3%)
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Kinetics changes since JPL 1997 have led to
reduced effects of halogens on ozone
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Reconciling Modelled and Observed Mid-latitude O, trends

® Missing source of reactive Cl or Br:
- in most models it is assumed that Br, is supplied mainly from the
decomposition of CH,Br and Halons. But short lived
bromocarbons (e.g. CHBr;, CH,Br,, CHBr,CIl, CH,BrCIl, CHBrCl,)
could provided an important source of Br to the stratosphere

® Changes in atmospheric dynamics not captured by models




Model-Model Intercomparison: Short-lived Species (HO,)

Testing the chemical mechanism in models: constrain short-lived species in photo-
stationary-state box model with long-lived tracers from 2-D model [NASA Models

and Measurements Inter. I, 1999]
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PSS model calculated abundances are similar using individual model
precursors

Radical concentration calculated by the individual models agree with the
PSS calculation (not shown) — gas phase chemistry consistent between

models
[courtesy of R. J. Salawitch]



T I ! | ! |

NOX & NOy, 350N, September [ PSS Model Results

Constrained by Precursors
From Each 2D Medel

* NO,/NO, ratios are similar

* Differences in NO, reflect differences in
NO, (most likely due to transport)

ALTITUDE (km)

T T ]III|1] T T rTT'{Ir"

PSS Model Results
Constrained by Precursors
From Each 2D Model

PSS Model Results
Constrained by Precursors
From Each 2D Model

~
@]

- — AER

(N
(@]
ALTITUDE (km)

Harvard 1

ALTITUDE (km)

— — — = LLNL ]
20 1 _
-\ i

‘\l L L Ll IIII | 1 1 1 lllll 1
1g—*0 1079 1078 10~7
_NO MIXING RATIO NO, MIXING RATIO

[courtesy of R. J. Salawitch] £




T T 'IIII[T['\

ClOX & CIY’ 350N9 September i gfr?:stlr\'dooiggld Rbeysgicursors

From Each 2D Model

»
(@]

- — AER

® Large differences in CIO, reflecting
GSFC

variations in precursors
Harvard

N
-

ALTITUDE (km)

* Differences in CIO/CI, are due in part
to differences in NO,

I T I T | T

PSS Model Results
Constrained by Precursors 7
From Each 2D Model

ALTITUDE (km)
(]
o

ALTITUDE (km)
N
o

PSS Model Results
Constrained by Precursors |
From Each 2D Model

0.6 0.20

CENO5/HCE
[courtesy of R. J. Salawitch]

Cto/ct,




Model & Measurement Intercomparison: O; Column

B1. Percent Difference
(GSFC-2D - TOMS)/TOM 0 (HARVARD - TOMS)/T OMST

‘o
60F .-

30-.
Generally good agreement -

with observed O, columns
(typically within 10% in mid-
latitudes)

LATITUDE (DEG)
LATITUDE (DEG)
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[NASA Models and Measurements Il, 1999]




Model & Measurement Intercomparison: Vertical
Distribution

B1. % DIFFERENCE OZONE (HARVARD - CLIMATOLOGY)/CLIMATOLOGY
JANUARY

60

- L
Despite good | 50
agreement with
observed O,
columns, the Harvard
model has large
differences (>50%)

below 20 km
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[NASA Models and Measurements Il, 1999]




Model & Measurement Intercomparison: Vertical
Distribution

B1. % DIFFERENCE OZONE (GSFC-3D - CLIMATOLOGY)/CLIMATOLOGY
JANUARY
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Fiogure 4.7. Continued.

* Both 2-D and 3-D models have difficulties in reproducing the O,
distribution in the lower stratosphere

[NASA Models and Measurements Il, 1999]




Impact of Model Transport
on O; Column

Run B1: specified surface
boundary conditions for source
gases

Run B3: specified O3
production rates and loss
frequencies in the models

Dobson Units

Isolates variations in O; column
due to transport differences in the
models

[NASA Models and Measurements Il, 1999]
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Changes in O; Column
from Mar.-Feb.

Run B1: specified surface
boundary conditions for source
gases

Run B3: specified O3
production rates and loss
frequencies in the models

Modelled O; columns with
constrained chemistry are similar
to those calculated with individual
model chemistry

— variations between models are
driven mainly by transport
differences

Dobson Units

Dobson Units

[NASA Models and Measurements Il, 1999]
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Mean age of air in the Stratosphere

age from CO, )
z = 20 km latitude

SF; age

Models significantly
underestimate the mean
age of air

= will result in errors in _, ]
the distribution of long- e it Range of models |
lived tracers e.g. NO,, R o T
C|y, etc... 50 0 5

latitude (degrees) megn age (years)

latitude = 40N

mean age (years) mean age (years)

[NASA Models and Measurements Il, 1999]




Main Points of Lecture

® The abundance of stratospheric O, represents a balance between
chemistry and transport (especially in the lower stratosphere)

° Radical-catalyzed loss represents the dominant sink for O, in the lower
and middle stratosphere

® Model cannot fully account for observed trend in lower stratosphere
based solely on rising levels of halogens

° Differences in transport is the main source of variations in O; between

models

° In 2-D and 3-D models there are significant deficiencies in transport in
the lower stratosphere = large errors in modelled O, in the lower
stratosphere




