Stratospheric Ozone

GCC Summer School, 2004 Banff, Alberta

Dylan Jones Department of Physics University of Toronto

Stratospheric Ozone

Defining characteristic of the stratosphere: temperature increases with altitude \Rightarrow radiative heating

O₂ and O₃ Absorption Cross Section

Spectrum of Solar Radiation vs. Altitude

Fig. 10-2 Solar actinic flux at different altitudes, for typical atmospheric conditions and a 30° solar zenith angle. From DeMore, W. B., et al. *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling*. JPL Publication 97-4. Pasadena, Calif.: Jet Propulsion Lab, 1997.

Odd-oxygen (O_x) Family

O_x Lifetime

$$O_2 + h\nu \to O + O \tag{1}$$

- $\mathbf{O} + \mathbf{O}_2 + \mathbf{M} \rightarrow \mathbf{O}_3 + \mathbf{M} \tag{2}$
- $O_3 + h\nu \rightarrow O_2 + O \tag{3}$
- $O_3 + O \rightarrow 2O_2 \tag{4}$

Loss of O by reaction (2): $-\frac{d[O]}{dt} = k_2 [O_2][M][O]$ $\tau_0 = \frac{[O]}{k_2 [O_2][M][O]} = (k_2 [O_2][M])^{-1}$

Loss of O_3 by reaction (3):

$$\tau_{O_3} = \frac{[O_3]}{J_3[O_3]} = (J_3)^{-1}$$

In steady state:

$$k_2 [O_2][M][O] = J_3[O_3]$$

$$\frac{[O]}{[O_3]} = \frac{J_3}{k_2 [O_2][M]} = \frac{\tau_0}{\tau_{O_3}} \ll 1$$

Chapman Chemistry vs. Observations

Box model calculation at 30°N for equinox

Catalytic Cycles For Ozone Loss: General Idea

 $O_3 + X \rightarrow XO + O_2$ $O + XO \rightarrow X + O_2$ Net: $O_3 + O \rightarrow 2 O_2$ X is a catalyst

The catalyst is neither created nor destroyed...but the <u>rate</u> for the catalytic cycle [odd-o removal in this case] depends on catalyst concentrations

• Propagation through cycling of HO_x radical family (example): $OH + O_3 \rightarrow HO_2 + O_2$ $HO_2 + O_3 \rightarrow OH + 2O_2$ $Net: 2O_3 \rightarrow 3O_2$ $OH + O_3 \rightarrow HO_2 + O_2$ $HO_2 + O_3 \rightarrow OH + 2O_2$ $Net: O + O_3 \rightarrow 2O_2$

• Termination (example): OH + HO₂ \rightarrow H₂O + O₂

 HO_x is a catalyst for O_3 loss

Nitrogen Oxide (NO_x) Radicals $(NO_x = NO + NO_2)$

- Initiation $N_2O + O(^1D) \rightarrow 2NO$
- Propagation (example) $NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + hv \rightarrow NO + O$ $O + O_2 + M \rightarrow O_3 + M$ *Null cycle*

rate limiting step $NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + O \rightarrow NO + O_2$ Net $O_3 + O \rightarrow 2O_2$ $O_3 \text{ loss rate:}$ $-\frac{d[O_3]}{dt} = 2k [NO_2][O]$

• Termination $NO_2 + OH + M \rightarrow HNO_3 + M$ $NO_2 + O_3 \rightarrow NO_3 + O_2$ $NO_3 + NO_2 + M \rightarrow N_2O_5 + M$ $N_2O_5 + H_2O \rightarrow 2HNO_3$

Recycling $HNO_3 + h\nu \rightarrow NO_2 + OH$ $HNO_3 + OH \rightarrow NO_3 + H_2O$ $NO_3 + h\nu \rightarrow NO_2 + O$ $N_2O_5 + h\nu \rightarrow NO_2 + NO_3$

Catalytic Cycles For Ozone Loss: Chlorine (ClO_x = Cl + ClO) radicals

- Initiation : (example) $CF_2Cl_2 + hv \rightarrow CF_2Cl + Cl$
- Propagation (example): $Cl + O_3 \rightarrow ClO + O_2$ $ClO + O \rightarrow Cl + O_2$ $Net: O_3 + O \rightarrow 2O_2$

 $Cl + O_3 \rightarrow ClO + O_2$ $OH + O_3 \rightarrow HO_2 + O_2$ $ClO + HO_2 \rightarrow HOCl + O_2$ $HOCl + h\nu \rightarrow Cl + OH$ $Net: O_3 + O_3 \rightarrow 3O_2$

reservoir species

• Termination:

 $Cl + CH_4 \rightarrow HCl + CH_3$ $ClO + NO_2 + M \rightarrow ClONO_2 + M$

Recycling: $HCl + OH \rightarrow Cl + H_2O$ $ClONO_2 + h\nu \rightarrow ClO + NO_2$

couples CIO_x and NO_x cycles

[Adapted from Jacob, 1999, and McElroy, 2002]

Catalytic Cycles For Ozone Loss: Bromine (BrO_x = Br + BrO) radicals

• Initiation:

(example) $CH_3Br + h\nu \rightarrow Br + CH_3$

• **Propagation:**

 $Br + O_3 \rightarrow BrO + O_2$ BrO + O \rightarrow Br + O₂ Net: O₃ + O \rightarrow 2O₂

• Termination:

 $Br + HO_2 \rightarrow HBr + O_2$ BrO + NO₂ + M \rightarrow BrONO₂ + M $Br + O_3 \rightarrow BrO + O_2$ $Cl + O_3 \rightarrow ClO + O_2$ $ClO + BrO \rightarrow Br + Cl + O_2$ $Net: O_3 + O_3 \rightarrow 3O_2$

Recycling: HBr + **OH** \rightarrow **Br** + **H**₂**O BrONO**₂ + hv \rightarrow **BrO** + **NO**₂

Vertical Distribution of O₃

Hydrolysis of N₂O₅ in Aerosols Increases the Sensitivity to Cl in the Lower Stratosphere

 $N_2O_5 + H_2O_{(I)} \rightarrow 2 HNO_3$

 N_2O_5 hydrolysis decreases NO_x and increases ClO_x and BrO_x

[From McElroy et al., 1992]

Sensitivity of Halogen Loss to NO_x

[From Wennberg et al. 1994]

Ozone Column Trend, 60°S-60°N [WMO, 1998]

The Antarctic Ozone Hole

Southern hemisphere ozone column seen from TOMS, October

1 Dobson Unit (DU) = 0.01 mm O_3 STP = 2.69x10¹⁶ molecules cm⁻²

Polar Ozone loss: Heterogeneous Chemistry

- $N_2O_5(g) + HCl(s) \rightarrow ClNO_2(g) + HNO_3(s)$
- $N_2O_5(g) + H_2O(s) \rightarrow 2 HNO_3(s)$
- $\text{CIONO}_2(g) + \text{H}_2\text{O}(s) \rightarrow \text{HOCl}(g) + \text{HNO}_3(s)$
- $CIONO_2(g) + HCl(s) \rightarrow Cl_2(g) + HNO_3(s)$
- HOCl(g) + HCl(s) \rightarrow Cl₂(g) + H₂O(s)
- $BrONO_2(g) + H_2O(s) \rightarrow HOBr(g) + HNO_3(s)$

• HOBr(g) + HCl(s)
$$\rightarrow$$
 BrCl(g) + H₂O(s)

Converts chlorine and bromine from stable forms (ClONO₂, HCl, and BrONO₂) to species that are rapidly photolyzed to yield reactive Cl and Br atoms

Reactions occur on surface of Polar Stratospheric clouds (PSC) <u>Type 1 PSC</u>:

- composed of nitric acid trihydrate and a ternary solution of HNO₃, H₂SO₄, H₂O
- Formation temperature: 195K
- Particle size < 10 µm

Type 2 PSC:

- Water ice particles
- Formation temperature: 188K
- Particle size > 10 µm

Sedimentation of PSC particles removes NO_y from polar stratosphere (denitrification)

PSC Formation vs. Temperature

Activation of Chlorine in The Antarctic Vortex

[From Kawa et al. 1997]

Catalytic Cycles of Polar O₃ Loss

Chlorine

 $2[Cl + O_3 \rightarrow ClO + O_2]$ ClO + ClO + M \rightarrow ClOOCl + M ClOOCl + hv \rightarrow Cl + ClOO ClOO + M \rightarrow Cl + O₂ + M Net: O₃ + O₃ \rightarrow 3O₂

O₃ loss rate:
$$-\frac{d[O_3]}{dt} = 2k [ClO]^2 [M]$$

O₃ loss proportional to the square of the CIO concentration

Bromine

- $Br + O_3 \rightarrow BrO + O_2$ $Cl + O_3 \rightarrow ClO + O_2$ $ClO + BrO \rightarrow BrCl + O_2 \qquad or$ $BrCl + hv \rightarrow Cl + Br$ Net: $O_3 + O_3 \rightarrow 3O_2$
 - $Br + O_3 \rightarrow BrO + O_2$ $Cl + O_3 \rightarrow ClO + O_2$ $ClO + BrO \rightarrow ClOO + Br$ $ClOO + M \rightarrow Cl + O_2 + M$ $Net: O_3 + O_3 \rightarrow 3O_2$

Denitrification removes NO_y (and thus NO_x), delaying the conversion of CI and Br to $CIONO_2$ and $BrONO_2$

Chronology of Antarctic Ozone Hole

Vertical Structure of The Ozone Hole

Influence of Transport on Stratospheric O₃

Net O₃ production in tropics
Net O₃ loss in mid- and high-latitudes

 \Rightarrow Net transport of O₃ from tropics to high-latitudes

•Virtually no seasonal change in the tropics

Ozone Column Trend, 60°S-60°N [WMO, 1998]

[courtesy of R. J. Salawitch]

[courtesy of R. J. Salawitch]

Solomon et al. (1998)

- NCAR/NOAA (NOCAR) 2-D model
 ⇒ climatological transport
- Enhancement in ClO due to longitudinal variations in temperature (wavenumbers 1,2,3)
- JPL 1997 kinetics, sulfate aerosol loading based on satellite obs.

Jackman et al. (1996)

- GSFC 2-D model ⇒ climatological transport
- JPL 1997 kinetics, sulfate aerosol loading based on satellite obs.
- Chipperfield, APC, 3, 1253, 2003
- SLIMCAT: 3-D CTM
- Transport based on ECMWF winds for 1979 to 1992
- JPL 2000 chemistry
- Sulfate aerosol loading based on observations
- Difference in O₃ found by comparing two long-term simulations of ozone:
 - one with fixed halogen loading and
 - other with variable halogen loading

Most models can not fully account for observed trend in lower stratosphere based solely on rising levels of halogens

Reconciling Modelled and Observed Mid-latitude O₃ trends

Missing source of reactive CI or Br :

- in most models it is assumed that Br_y is supplied mainly from the decomposition of CH_3Br and Halons. But short lived bromocarbons (e.g. $CHBr_3$, CH_2Br_2 , $CHBr_2CI$, CH_2BrCI , $CHBrCI_2$) could provided an important source of Br to the stratosphere

Changes in atmospheric dynamics not captured by models

Model-Model Intercomparison: Short-lived Species (HO_x)

Testing the chemical mechanism in models: constrain short-lived species in photostationary-state box model with long-lived tracers from 2-D model [NASA Models and Measurements Inter. II, 1999]

- PSS model calculated abundances are similar using individual model precursors
- Radical concentration calculated by the individual models agree with the PSS calculation (not shown) ⇒ gas phase chemistry consistent between models

[courtesy of R. J. Salawitch]

ClO_x & Cl_y, 35°N, September

- Large differences in CIO, reflecting variations in precursors
- Differences in CIO/CI_y are due in part to differences in NO_x

PSS Model Results

From Each 2D Model

0.8

1.0

0.2

0.4

0.6

CENO3/HCE

50

40

30

20

0

ALTITUDE (km)

Model & Measurement Intercomparison: O₃ Column

Model & Measurement Intercomparison: Vertical Distribution

Fiogure 4.7. Continued.

 Both 2-D and 3-D models have difficulties in reproducing the O₃ distribution in the lower stratosphere Impact of Model Transport on O₃ Column

<u>Run B1</u>: specified surface boundary conditions for source gases

<u>Run B3</u>: specified O3 production rates and loss frequencies in the models

Isolates variations in O₃ column due to transport differences in the models

[NASA Models and Measurements II, 1999]

Changes in O₃ Column from Mar.-Feb.

<u>Run B1</u>: specified surface boundary conditions for source gases

<u>Run B3</u>: specified O3 production rates and loss frequencies in the models

Modelled O₃ columns with constrained chemistry are similar to those calculated with individual model chemistry

⇒ variations between models are driven mainly by transport differences

[NASA Models and Measurements II, 1999]

Mean age of air in the Stratosphere

Main Points of Lecture

- The abundance of stratospheric O₃ represents a balance between chemistry and transport (especially in the lower stratosphere)
- Radical-catalyzed loss represents the dominant sink for O₃ in the lower and middle stratosphere
- Model cannot fully account for observed trend in lower stratosphere based solely on rising levels of halogens
- Differences in transport is the main source of variations in O₃ between models
- In 2-D and 3-D models there are significant deficiencies in transport in the lower stratosphere ⇒ large errors in modelled O₃ in the lower stratosphere